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ABSTRACT

A mathematical formulation for intensity-based slice-to-volume registration is proposed. The approach is flex-
ible and accommodates various regularization schemes, similarity measures, and optimizers. The framework is
evaluated by registering 2D and 3D cardiac magnetic resonance (MR) images obtained in vivo, aimed at real-
time MR-guided applications. Rigid-body and affine transformations are used to validate the parametric model.
Target registration error (TRE), Jaccard, and Dice indices are used to evaluate the algorithm and demonstrate
the accuracy of the registration scheme on both simulated and clinical data. Registration with the affine model
appeared to be more robust than with the rigid model in controlled cases. By simply extending the rigid model to
an affine model, alignment of the cardiac region generally improved, without the need for complex dissimilarity
measures or regularizers.
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1. INTRODUCTION

Recently, there has been increased interest in using magnetic resonance imaging (MRI) for image-guided pro-
cedures that have traditionally been guided by X-ray imaging. In some patients with a history of myocardial
infarction (MI), electrical activity in the heart may be disrupted by substrate formed from a previous MI, trigger-
ing arrhythmia. Treatment options include catheter ablation, where the offending substrate is surgically ablated
to correct the arrhythmia. Catheter ablation is traditionally guided by X-ray fluoroscopy, however, concerns
over radiation exposure have led to MRI being proposed as an alternative. Besides being a non-invasive imaging
modality, other advantages of MRI include superior soft tissue contrast to better image anatomical features in
and around the heart, the ability to capture depth information without multiple projections and to easily adjust
the positions of imaging planes to access areas of interest.

MRI-guided procedures require fast imaging techniques to capture images in real-time. Fortunately, MR
sequences for real-time 2D visualization exist and have been used to guide procedures on swine,1–5 dogs,6–8 and
humans9 and have been shown to be feasible.

The short acquisition time required by real-time MRI means that the 2D images lack in quality compared to
slices of cine MR volumes that are acquired prior to surgical intervention without the constraints of producing
images at real-time frame rates and are therefore less noisy.

3D pre-operative images provide detailed anatomical information while 2D intra-operative images provide
live positional updates. Ideally, one can register the pre- and intra-operative images together to combine the
advantages of both.

Various methods to perform slice-to-volume registration have been proposed.10–15 Of interest to us is the
application of slice-to-volume registration to MRI-guided procedures. Registration between pre- and intra-
operative images has been studied for non-cardiac applications in humans,16,17 but on a more relevant note,
work has been done in vivo on swine to register 2D intra-operative cardiac MR image slices to pre-operative
MR image volumes.18,19 Xu et al. also present registration of high-quality pre-operative MR image volumes to
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live cardiac MR images on human volunteers in vivo with applications to MRI-guided radiofrequency ablation
of substrate in the heart, but also focuses on registration incorporating rigid-body transformations.20

In most of the studies mentioned above, rigid-body registration was employed. While rigid registration is
generally employed to reduce computational cost and to speed up the registration process, it risks oversimplifying
the displacement of body tissues, which are generally not rigid. The highly deformable nature of the heart and
displacement at various stages of the breathing cycle make registration of the cardiac region more challenging.
Deformable registration may be more accurate, but is computationally much more expensive.

Work involving slice-to-volume registration has been recent and not nearly as numerous as projective 2D-3D
registration, especially with respect to applications in MRI-guided procedures. In addition, there seems to be a
lack of a precise model in the literature, in contrast to 2D-2D or 3D-3D registration.21

We propose a general mathematical framework for slice-to-volume registration which can accommodate para-
metric and non-parametric transformation models. A rigid transformation model can be used in this framework,
but the user can easily adapt a different parametric transformation model.

We will demonstrate this framework on parametric models, specifically, using this framework to extend
existing 2D-3D rigid registration to affine registration. Although the number of parameters in an affine parametric
model (12 parameters) is twice the number of parameters in a rigid model (6 parameters), the figure dwarfs in
comparison to the number of parameters dealt with in deformable registration, and thus is still a computationally
inexpensive method that accounts for some non-rigid deformations.

The intensity-based registration framework is flexible and can accommodate various models and parameters.
We demonstrate by registering high-resolution 3D MR images to noisier 2D real-time MR images, using rigid
and affine parametric models, and investigate the ill-posedness of 2D-3D registration as an inverse problem.

2. MODEL

Consider the registration problem of a 3D ‘template’ image T to a 2D ‘reference’ image R, where R is a realiza-
tion of T deformed via a transformations y and sliced at a certain location z. The reference and template images
are represented by mappings R : Ω ⊂ R2 → R and T : Ω × Z ⊂ R3 → R of compact support. Considering a
slice location z, the goal is to find the transformation y : R3 → R3 such that Lz(T [y]) is similar to R, in which
T [y] is the transformed template image and Lz : L2(Ω×Z)→ L2(Ω) is the slicing operator at level z ∈ Z ⊂ R,
where Lz(T (x1, x2, x3)) := T (x1, x2, z) for (x1, x2, x3) ∈ R3. A formulation of the 2D-3D image registration of
a template image T to a reference image R can be written as the following problem.

2D-3D Image Registration Problem: Given two images R : Ω ⊂ R2 → R and T : Ω×Z ⊂ R3 → R and an
arbitrary given slice location z ∈ R, find a transformation y : R3 → R3 that minimizes the objective functional

J [y] := D[Lz(T [y]),R] + S[y − yref]. (1)

Here, D is a distance that measures the dissimilarity of Lz(T [y]) and R, and S is a regularization expression on
the transformation y that penalizes transformations “away” from yref.

2.1 Parametric 2D-3D Registration

It is possible that y can be parametrized via parameters w. For example if y is an affine transformation, the
transformation on a point x = (x1, x2, x3) can be expressed as

y(w;x) =

w1 w2 w3

w5 w6 w7

w9 w10 w11

x1

x2

x3

+

w4

w8

w12

 .

In general, for the parametric registration problem we equivalently aim to minimize

J [w] := D[Lz(T [y(w)]),R] + S[w − wref]. (2)
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Here we assume sum of squared distances (SSD) is the dissimilarity measure D

D[Lz(T ),R] = DSSD[Lz(T ),R] :=
1

2

∫
Ω

(Lz(T (x))−R(x))2 dx.

Furthermore, the regularization functional S can be defined as

S[w − wref] :=
1

2
× (w − wref)T M (w − wref) (3)

for a symmetric positive definite weight matrix M that acts as a regularizer (see21,22).

If no regularization is imposed on w, for any pair of given images R and T the above model is ill-posed.
Therefore, to yield a unique w, we require a regularizer S independent of the input images. The following
theorem proves this claim.

Theorem 2.1. Consider a given z. Any two affine transformations wA and wB that satisfy the following
conditions yield Lz(T [y(wA;x)])=Lz(T [y(wB ;x)]):wA

1

wA
5

wA
9

 =

wB
1

wB
5

wB
9

 ,

wA
2

wA
6

wA
10

 =

wB
2

wB
6

wB
10

 ,

wA
3 − wB

3

wA
7 − wB

7

wA
11 − wB

11

 z +

wA
4 − wB

4

wA
8 − wB

8

wA
12 − wB

12

 =

0
0
0

 .

Proof. Note that for any given z and w

Lz[T [y(w;x)]] = Lz

[
T

[w1 w2 w3

w5 w6 w7

w9 w10 w11

x1

x2

x3

+

w4

w8

w12

]]

= T

[w1 w2 w3
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z

+

w4

w8

w12

].
Now consider wA and wB that for any x1, x2wA
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Therefore for any x1, x2wA
1 − wB

1

wA
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1
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9 − wB

1

x1 +

wA
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2
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x2 = −
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4
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8
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].
Equating the right-hand-side and left-hand-side to zero completes the proof.

This suggests that if no regularization is imposed, the first two columns of wA and wB have to match. In
addition, for any given third columns of wA and wB , a given z, and a given fourth column of wA, we can
always compute the fourth column of wB that yields the same sliced result. This suggests that if we impose no
regularization, the parameters of w have to be reduced to 9 instead of 12. In practice, since we typically have
information about the reference wref, we impose regularization and keep the number of parameters as 12 in the
parametric affine case.

Furthermore, regardless of how many parameters we choose for w, the registration problem may be ill-posed
in theory due to the intensities of images R and T . For example, if R is image of a disk in 2D and T is image of
a sphere in 3D, the problem yields infinitely many solutions since infinitely many cross-sections of a sphere can
yield a disk. Due to the structure of the employed input images, this does not happen in practice. That being
said, we regularize the affine transformation w in all cases.
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2.2 Discretization

Here we employ a discretize-then-optimize paradigm (see23 and the FAIR software21 for details) to minimize the
functional in Eq. (2).

Discretizing Ω into n pixels and Z into l pixels, we can define grids xR = [x1
k, x

2
k]k=1,...,n and xT =

[x1
j , x

2
j , x

3
j ]j=1,...,n×l relating to R and T , respectively, to be the discretizations of Ω and Ω × Z. Further-

more, y ≈ y(w, xT ), w = w, the cell-centered-discretized images are T ≈ T (xT ) and R ≈ R(xR) (containing nl
and n pixels, respectively), and discretization of the operators D and S are represented by D and S (see21).
Table 1 summarizes the sizes of the corresponding discrete variables throughout this manuscript.

For a given z, the discretization of the operator Lz, denoted by Lz can be computed as

Lz = In×nl := In×n ⊗
1× l size︷ ︸︸ ︷

[0, . . . , 0, 1︸︷︷︸
dl(z + ω)/2ωe-th component

, 0, . . . , 0] (4)

in which we have assumed Z is the interval (−ω, ω). The discretized problem is now to minimize the functional

J [w] := D[Lz(T (y(w))), R] + S(w− wref). (5)

2.3 Optimization

We compute the derivative and Hessian of J denoted by dJ and HJ respectively in a Gauss-Newton approach
described in Algorithm 1.24 For simplicity, we allow ourselves to interchangeably refer to derivatives of real-
valued functions as Jacobians as well. The Hessian and Jacobian of the regularization S are denoted respectively
as dS and HS . To proceed, we represent the Jacobian of the objective function J as dJ := ∂J

∂w . Now define L :=
Lz(T (y(w))) and r := L−R. Choosing the SSD distance measure and defining Ψ(r) := 1

2r
T r = D[Lz(T (y(w))), R]

yields J [w] = Ψ + S(w− wref). Hence using the chain rule

∂J

∂w
=

(
∂Ψ

∂r

)(
∂r

∂L

)(
∂L

∂T

)(
∂T

∂y

)(
∂y

∂w

)
+

(
∂S

∂w

)
= rT × In×n × In×nl × dT × dy + dS

= rT × In×n × In×nl × dT × dy + (w− wref)TM

in which dT := ∂T
∂y represents the derivative of the interpolant and dy := ∂y

∂w is the derivative of the transformation

y with respect to w. Derivatives dy and dT are both available in FAIR.21 Finally, the Hessian of J denoted by
HJ can be approximated as

HJ = d2Ψ +HS ≈ drT dr +HS = drT dr + M, (6)

where

dr =

(
∂r

∂L

)(
∂L

∂T

)(
∂T

∂y

)(
∂y

∂w

)
= In×n × In×nl × dT × dy = In×nl × dT × dy. (7)

In practice, to speed up the computations, matrix-free implementation of the algorithm can be applied.
We also consider different discrete representations of the image registration problem, and address the discrete
problems sequentially in the so-called multi-level approach. Starting with the coarsest and thus most inexpensive
problem, a solution is computed, which then serves as a starting guess for the next finer discretization. This
procedure has several advantages. It adds additional regularization to the registration problem (more weight is
given to more important structure), it is very efficient (typically, most of the work is done on the computationally
inexpensive coarse representations, and only a refinement is required on the costly finest representation), it
preserves the optimization character of the problem and thus allows the use of established schemes for line
searches and stopping. The use of this technique leads to optimal schemes in the sense that only a fixed number
of arithmetic operations is expected for every data point and prevents the optimization problem from being
trapped in a local minimum.
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Variable(s) Size
R,L, r n× 1
T nl × 1
xR 2n× 1
xT , y 3nl × 1
w, wref 12× 1
S, J,Ψ 1× 1
dT nl × 3nl
dy 3nl × 12
dr n× 12

dJ, dS 1× 12
HJ , HS ,M 12× 12

Table 1: Sizes of discrete variables. n and l correspond to the number of pixels in each slice and the number of
slices in the discretization, respectively.

Algorithm 1 Minimizing J [w] using Gauss-Newton Approach

Initialize
[
w
]
←
[
w0

]
.

while not converged do
Evaluate HJ and dJ at [w].
Solve the descent direction from the linear equation HJ

[
δw
]

= −dJT .
Find a positive scalar step-size s using a line-search scheme.
Update

[
w
]
←
[
w
]

+ s
[
δw
]
.

end while

3. EXPERIMENTS AND RESULTS

3.1 Data

3D pre-procedural and 2D real-time cardiac MRI were acquired from 6 volunteers using a 1.5T MRI scanner
(GE Healthcare, Waukesha, WI).

3.1.1 Prior 3D (cine) images

Each pre-procedural 3D volume consists of a stack of 12 to 14 short-axis (SAX) slices of the heart with a
resolution of 1.37 × 1.37 × 8 mm3 and a field of view (FOV) of 350 × 350 mm2. The images were acquired at
end-expiration breath-hold with an electrocardiogram (ECG) triggered GE FIESTA pulse sequence and only
end-diastolic images were used.

3.1.2 Real-time images

2D real-time images were aquired at the same slice locations as in the pre-procedural scans, but under free-
breathing conditions. The images were obtained continuously with a fast spiral balanced steady state free
precession (bSSFP) sequence at a frame rate of 8 fps, an in-plane resolution of 2.2 × 2.2 mm2, slice thickness
8 mm, and a FOV of 350× 350 mm2. The images were ECG-gated and only images acquired end-diastole were
used in the following experiments. It should be noted that stacked images do not produce meaningful volumes
as there is no synchronization between different slices.

3.2 Validation of Results

If registration between two (non-identical) images is successful, a slice obtained from transforming the 3D tem-
plate image with the transformation parameters obtained from registration and then slicing at a predetermined
slice location would yield a 2D image similar to the 2D reference image. While a look at the end-result images can
give us a subjective impression of whether registration was successful and transformation parameters returned
have aligned objects in the image well, no ‘ground truth’ is available in general. We can, however, evaluate
end-result images for their purpose in application.
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The images in question are cardiac MR images, where the region of interest is the left ventricle (LV). One
way of measuring how well two images have been aligned by registration is to measure how much the LVs
in the template and reference images overlap before and after registration. Overlap can be quantified by the

Dice coefficient and the Jaccard index, which are, respectively, defined as defined as: Dice(A,B) = 2|A∩B|
|A|+|B| and

Jaccard(A,B) = |A∩B|
|A∪B| .

The LV also contains papillary muscles which can be used as landmarks. Alignment of the landmarks can be
quantified by computing the distance between corresponding landmarks in the reference and template images,
before and after registration. This quantity, called the target registration error (TRE), is the l2-normed distance
between landmarks in the template image and the corresponding landmarks in the reference image.

The LV and landmarks in the cine image volume were manually selected. The endocardium of the LV was
outlined for each slice, and the in-plane segmentations stacked to form a 3D segmentation mask. To obtain a
2D segmentation mask of L after registration, the 3D segmentation mask is transformed using the parameters
obtained from registration, and then sliced.

In the real-time images, the LV and landmarks were also segmented, by an expert. The coordinates for the
landmarks in the image are 2D, but knowing the location where the slice was taken from allows us to append an
approximate third coordinate to the landmarks.

3.3 Cine/cine Controlled Experiments

Before demonstrating the affine model on registration between a cine (pre-operative) image and a real-time (intra-
operative) image, we first perform controlled experiments. Controlled registration experiments were performed
between a 3D cine volume (template) and a 2D image (reference) that is a slice of a transformed version of the
3D volume. Since that initial transformation is known, ground truth is available.

For all experiments following, domains Ω = (−175, 175) × (−175, 175) mm2 and Z = (−48, 48) mm, and
discretizations n = 1282 = 16384 and l = 12. For affine registration, we will also assume the regularizer M is a
diagonal 12× 12 matrix with unit entries on the main diagonal except for locations 3, 7, and 11 (third column
of matrix) where entries are 106, i.e., large. If wref is chosen to be the identity transformation, the regularizer
ensures the computed parameters [w3, w7, w11] to be close to [0, 0, 1]; see Theorem 2.1. Linear interpolation and
an Armijo line search24 were used in the multi-level Gauss-Newton optimization framework

3.3.1 Affine Initial Transformation

If the initial transformation applied to generate the reference image is an affine transformation, successful affine
registration should produce a transformed template slice that aligns with the reference image.

Recall that the motivation behind using an affine model as opposed to a rigid was to more accurately represent
the deformable nature of organs in the body. To demonstrate that the rigid model does indeed fail when the
nature of the deformation applied to the reference image R is not rigid, we individually perturbed each entry of
the identity transform w = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0], and applied the perturbed set of parameters in the initial
transformation to obtain R. For each R that was obtained, rigid and affine registration was performed. Due to
Theorem 2.1, perturbing entries w3, w7, and w11 is equivalent (in terms of producing the same template image
slice) to perturbing w4, w8, and w12 but scaled by a factor of z, the location of the slicing operator, so only 9
entries of w need to be perturbed; w4, w8, and w12 were not perturbed. For each of the 9 entries, an ε between
-0.5 to 0.5 was added to the entry to produce a set of initial parameters used to obtain R.

Figures 1, 2, and 3 show the effects of perturbing the entries of w2 on LV overlap before registration, after rigid
registration, and after affine registration. As expected, affine registration improves results over rigid registration.
Similar results found for entries w1, w5, w6, w9, and w10, but for the sake of brevity, no figures will be shown for
those entries.

Figures 4, 5, and 6 show the effects of perturbing the entries of w3 on LV overlap before registration, after
rigid registration, and after affine registration. Due to Theorem 2.1, perturbations in w3, w7, and w11 can be
compensated for during registration by changing the values of w4, w8, and w12, which are translation parameters
and therefore a rigid transformation. Rigid registration was therefore comparable to affine transformation for
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Figure 1: LV overlap as a function of the perturbation on w2 before registration for all data sets. Reference
image obtained by an affine transformation that is the identity transformation except for the addition of the
perturbation to w2.
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Figure 2: LV overlap as a function of the perturbation on w2 after rigid registration for all data sets. Reference
image obtained by an affine transformation that is the identity transformation except for the addition of the
perturbation to w2.

perturbations on w3, as seen in Figures 5 and 6. The same was found for entries w7 and w11, but for the sake
of brevity, no figures will be shown for those entries.

Recall that an indicator of good alignment is a simultaneously large Jaccard index and small TRE. Figures
7 to 12 show the effects of perturbation on w2 and w3 on the TRE before registration, after rigid registration,
and after affine registration. Consistent with the previous paragraph, it was also found that perturbing the
entries of w2 produced results similar to those obtained by perturbing the entries of w1, w5, w6, w9, and w10, and
perturbing the entries of w3 produced results similar to those obtained by perturbing the entries of w7 and w11.

For perturbations on w2 (and w1, w5, w6, w9, w10 as well), affine registration generally performed well, in-
creasing Jaccard indices and reducing TREs. Rigid registration did not improve results; Jaccard indices after
rigid registration became more varied and generally appear to worsen.

For perturbations on w3 (and w7, w11), the results of rigid registration were comparable to affine registration.
This can be explained by Theorem 2.1 – variations in w3, w7, and w11 can be compensated for by changing the
values of w4, w8, and w12 to obtain the same 2D slice of a 3D volume.

3.4 Real-time/Cine Experiments

No initial 3D transformation was applied to obtain the reference image as was done on the test cases, since the
reference images here are 2D real-time images. It is also not meaningful to perform a 2D transformation on a real-
time image to obtain the reference image for registration, since a modified image no longer represents a clinical
setting. Because the slice locations in the real-time and cine cardiac MRI are already rather aligned initially in
the z-direction, registration between images from same the slice prescription would align things mostly within the
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Figure 3: LV overlap as a function of the perturbation on w2 after affine registration for all data sets. Reference
image obtained by an affine transformation that is the identity transformation except for the addition of the
perturbation to w2.
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Figure 4: LV overlap as a function of the perturbation on w3 before registration for all data sets. Reference
image obtained by an affine transformation that is the identity transformation except for the addition of the
perturbation to w3.
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Figure 5: LV overlap as a function of the perturbation on w3 after rigid registration for all data sets. Reference
image obtained by an affine transformation that is the identity transformation except for the addition of the
perturbation to w3.
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Figure 6: LV overlap as a function of the perturbation on w3 after affine registration for all data sets. Reference
image obtained by an affine transformation that is the identity transformation except for the addition of the
perturbation to w3.
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Figure 7: The TRE as a function of the perturbation on w2 before registration for all data sets. Reference
image obtained by an affine transformation that is the identity transformation except for the addition of the
perturbation to w2.
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Figure 8: The TRE as a function of the perturbation on w2 after rigid registration for all data sets. Reference
image obtained by an affine transformation that is the identity transformation except for the addition of the
perturbation to w2.
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Figure 9: The TRE as a function of the perturbation on w2 after affine registration for all data sets. Reference
image obtained by an affine transformation that is the identity transformation except for the addition of the
perturbation to w2.
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Figure 10: The TRE as a function of the perturbation on w3 before registration for all data sets. Reference
image obtained by an affine transformation that is the identity transformation except for the addition of the
perturbation to w3.
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Figure 11: The TRE as a function of the perturbation on w3 after rigid registration for all data sets. Reference
image obtained by an affine transformation that is the identity transformation except for the addition of the
perturbation to w3.

Proc. of SPIE Vol. 10135  1013520-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/15/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



Size of perturbation
                    

T
R

E
 (

m
m

)

0

2

4

6

8

10

12

14

16

18

20

22

24

-0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50

Figure 12: The TRE as a function of the perturbation on w3 after affine registration for all data sets. Reference
image obtained by an affine transformation that is the identity transformation except for the addition of the
perturbation to w3.

Jaccard Dice TRE (mm)
Before registration 0.67 0.80 32.8 ± 0.2

After rigid registration 0.71 0.83 6.6 ± 0.8
After affine registration 0.87 0.93 4.5 ± 0.1

Table 2: Jaccard indices and Dice coefficients of left ventricle overlap before and after registration between a 3D
cine volume and a real-time image taken from z = −4 mm. Slicing operations performed at z = −36 mm.

xy-plane, and give little indication of how well the algorithm works when the images are taken at different slice
locations. Performing registration between different slices would be a better indicator of how well the algorithm
improves alignment in the z-direction. For the following example (Figure 14), the real-time slice was taken at
spatial location z = −4 mm while the slicing operation was applied on the template image at z = −36 mm, so the
initial slice of the 3D template is at z = −36 mm. To register the images successfully, the registration algorithm
must return transformation parameters that translate the template image by approximately 32 mm (the physical
distance between the spatial locations of the reference image and slicing operator) in the z-direction, along with
appropriate alignments in the x- and y-directions.

Figures 13 and 14 Table 2 show the results of one experiment. The affine model appears to produce slightly
better results for this experiment, due to its ability to deform, apparent in the LV overlap after registration
(Figures 13g and 14g).

In most clinical applications, initial misalignment will not be as large and the two images registered will be
slices in close proximity to one another. Affine and rigid registration was performed on real-time images from
6 data sets, each contributing 1 cine image and between 17 to 29 real-time images, to a total of 143 real-time
images across 6 data sets. Each real-time image was registered to the cine image of the same subject at the
same slice location and cardiac phase. Although the slice prescriptions are identical, there may be small motion
normal to the image plane. The results are listed in Table 3.

With the exception of Data Set 3 and Data Set 5, rigid registration improves or leaves results unchanged.
Affine registration improves results for all data sets except Data Set 3. For Data Set 3, rigid registration returned
values worse than what was initially given and affine registration performed even worse. This was due to local
deformation within the cardiac region, consistent throughout the data available for Data Set 3. Since the body
cavity is considerably larger than the cardiac region and comprises most of the content in each image, the
algorithm accounted for the body cavity, not the heart, thus the LV becomes more misaligned after registration.
For Data Set 5, rigid registration returned slightly worse values than what the algorithm initially started with,
but affine registration produced values that were a slight improvement over the initial data. From the values
for the rest of the data sets, however, affine registration returns better results in general compared to rigid
registration. The TRE was not calculated in this set of experiments because the images are from the same slice
locations, image resolution in the z-direction (the direction normal to the short-axis slices) is much coarser than
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 13: Results of rigid registration between a 3D cine image and a 2D real-time image on the same subject as
in the controlled experiment, with an initial misalignment of approximately 32mm in the z-direction (through the
image plane). (a) Reference image R. (b),(c) Template slice L before and after registration. (d),(e) Difference
between the reference image and template slice (L − R) before and after registration. (f),(g) Segmentation
masks showing left ventricle overlap before and registration, with in-plane reference image landmarks (×) and
out-of-plane template image landmarks projected onto image (+).
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 14: Results of affine registration between a 3D cine image and a 2D real-time image on the same subject
as in the controlled experiment, with an initial misalignment of approximately 32mm in the z-direction (through
the image plane). (a) Reference image R. (b),(c) Template slice L before and after registration. (d),(e) Difference
between the reference image and template slice (L−R) before and after registration. (f),(g) Segmentation masks
showing left ventricle overlap before and after registration, with in-plane reference image landmarks (×) and
out-of-plane template image landmarks projected onto image (+).
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Data Set Before registration After rigid registration After affine registration
Jaccard 1 0.86 ± 0.06 0.87 ± 0.07 0.92 ± 0.02

Dice 1 0.92 ± 0.04 0.93 ± 0.04 0.96 ± 0.01
Jaccard 2 0.75 ± 0.02 0.86 ± 0.02 0.87 ± 0.02

Dice 2 0.86 ± 0.02 0.93 ± 0.01 0.93 ± 0.01
Jaccard 3 0.77 ± 0.06 0.47 ± 0.13 0.21 ± 0.08

Dice 3 0.87 ± 0.04 0.63 ± 0.13 0.34 ± 0.12
Jaccard 4 0.49 ± 0.08 0.66 ± 0.05 0.73 ± 0.08

Dice 4 0.65 ± 0.07 0.80 ± 0.04 0.84 ± 0.06
Jaccard 5 0.80 ± 0.04 0.73 ± 0.03 0.83 ± 0.04

Dice 5 0.89 ± 0.03 0.84 ± 0.02 0.91 ± 0.02
Jaccard 6 0.76 ± 0.09 0.76 ± 0.09 0.80 ± 0.09

Dice 6 0.86 ± 0.06 0.86 ± 0.06 0.88 ± 0.06

Table 3: LV overlap before registration, after rigid registration, and after affine registration between a pre-
operative 3D cine volume and a noisier, lower-resolution intra-operative 2D real-time image, as in a clinical
setting.

the in-plane resolution, i.e. slice thickness is larger than pixel size; because there is no ground truth available
for us to obtain more precise landmark locations, z-direction uncertainty would dominate and render the results
meaningless.

4. DISCUSSIONS AND CONCLUSIONS

In control experiments where the reference image is a transformed and sliced version of the template image, it
was demonstrated that rigid registration did not sufficiently account for deformations that are affine in nature.
Rigid registration can, however, return the same end-result image slice (slice of transformed template) if the only
affine deformations are scaling in the z-direction (w11) and shearing in directions normal to the z-axis (w3 and
w7). We can conclude that the affine model performs better than, or is at least comparable to, the rigid model
for control experiments, but at a small expense of computational time.

The algorithm was also tested on other clinical data, registering high-resolution cine images to noisier, lower-
resolution real-time images. An example of registration performed between a real-time image slice and a cine
image sliced at a location approximately 32 mm away in the normal direction from the real-time image was shown
in the previous section. The registration algorithm corrected the large z-direction translation and produced a
resulting image with structural features in the heart very similar to those in the reference image, shown in Figure
14. The Jaccard and Dice measures are two-dimensional measures, therefore it is also important to note that
their values are projections onto a plane. Visually, the cine slice aligns well after registration and appears to be
in the same plane as the real-time image, but before registration, the cine slice is out of the plane so measures
of overlap before registration may not be meaningful. In computing the TRE before and after registration, the
z-component is also an estimate based on the geometrical locations of the image slices, assuming that landmark
motion normal to the image plane is small compared to the slice thickness (8mm). One way of verifying the
true location of a landmark, pinpointing its precise location, is to attach fiducial markers to the landmarks –
impossible for in vivo samples for obvious ethical reasons. For the reasons described above, for such experiments
where there is no ‘ground truth’ and where misalignment is attributed mainly to a component normal to the
image plane, i.e. the reference and template images are of objects in different geometrical spaces, it is important
to look at the end-result images to judge how well the registration algorithm has aligned the images.

In registration between real-time images and cine images of the same slice location and cardiac phase, affine
registration generally performed better than rigid registration, presumably due to its greater flexibility over the
rigid model, allowing it to deform the cine image to more closely match the real-time image.

We can conclude that between images of the same modality, the proposed multi-level parametric 2D-3D
registration scheme can align images well for misalignments within reasonable limits encountered in clinical
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applications, such as motion due to respiration. Despite different acquisition methods in the real-time and prior
cine MR images, the registration algorithm improved alignment with the SSD dissimilarity measure.

Affine registration was found to be a generally more robust model than rigid registration in this framework.
This suggests that in attempting to improve results for applications employing 2D-3D rigid registration with the
SSD, one can first consider simply expanding the transformation model to an affine one before considering more
complex dissimilarity measures and regularizers. The advantage of the affine model is its simplicity, allowing
more accurate registration at a small cost.

For multi-modality registration where intensities of the template and reference images differ more drastically,
one can consider using other dissimilarity measures and/or optimizers21,25 that can fit well within the context
of the general proposed model.
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[19] Smoĺıková-Wachowiak, R., Wachowiak, M. P., Fenster, A., and Drangova, M., “Registration of two-
dimensional cardiac images to preprocedural three-dimensional images for interventional applications,”
J. Magn. Reson. Im. 22, 219–228 (2005).

[20] Xu, R. and Wright, G. A., [Statistical Atlases and Computational Models of the Heart - Imaging and
Modelling Challenges: 5th International Workshop, STACOM 2014, Held in Conjunction with MICCAI
2014, Boston, MA, USA, September 18, 2014, Revised Selected Papers ], ch. Registration of Real-Time and
Prior Imaging Data with Applications to MR Guided Cardiac Interventions, 265–274, Springer International
Publishing, Cham (2015).

[21] Modersitzki, J., [FAIR: Flexible Algorithms for Image Registration ], SIAM (2009).

[22] Modersitzki, J., [Numerical methods for image registration ], Oxford University Press, Oxford (2004).

[23] Haber, E. and Modersitzki, J., “A multilevel method for image registration,” SIAM J. Sci. Comput. 27(5),
1594–1607 (2006).

[24] Nocedal, J. and Wright, S. J., [Numerical Optimization ], Springer, New York, 2nd ed. (2006).

[25] Goshtasby, A. A., [2-D and 3-D Image Registration ], Wiley Press, New York (2005).

Proc. of SPIE Vol. 10135  1013520-16

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/15/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx


