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Abstract. Dynamic contrast Magnetic Resonance myocardial perfusion
imaging has evolved into an accurate technique for the diagnosis of coro-
nary artery disease. In this manuscript, we introduce and evaluate the
performance of a non-rigid joint multi-level image registration and inten-
sity correction algorithm on a common dataset. An objective functional
is formed for which the corresponding Hessian and Jacobian is computed
and employed in a multi-level Gauss-Newton minimization approach. In
this paper, our experiments are based on elastic regularization on the
transformation and total variation on the intensity correction. Our pre-
liminary validations suggest that the registration scheme provides suit-
able motion correction if the parameters in the algorithm are properly
tuned.
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1 Introduction

Dynamic contrast MR myocardial perfusion imaging has evolved into an accurate
technique for the diagnosis of coronary artery disease. T1-weighted images are
rapidly acquired every heartbeat to track the uptake and washout of a contrast
agent. The diagnosis is based on time-series signal intensity data typically from
rest and pharmacological stress images. Quantification of myocardial perfusion
can be a useful adjunct to visual analysis, and can be valuable in other contexts.
To quantify the time-series data, motion-free data is desired. However, at least
40 seconds of data are typically used to obtain regional perfusion values in the
myocardium. Breath-holding becomes a major issue, particularly for patients and
during pharmacological stress imaging. The problem is then to handle the inter-
frame motion artefact caused by respiration, which makes quantitative analyses
difficult.

In this manuscript, we present preliminary validations of a non-rigid joint
motion and intensity correction algorithm that has been recently introduced in
[4] and evaluate it on a common dataset. A key ingredient of the approach is the
integration of intensity change compensation and motion correction into a unified
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model. Rather than dividing the task into two sub-problems and treating these
sub-problems sequentially and independently, the new approach assumes that
these sub-problems are in fact related and mutually dependent. The algorithm is
therefore based on a generalized variational framework, which integrates changes
of positions and changes of intensities into a combined optimization framework.
Recently in [5], a general PDE-framework for registration of contrast enhanced
images was introduced. A PDE with a steady-state solution that corresponds to
the solution of the described problem is derived and solved numerically. Further-
more, [14] model the intensity correction as a multiplicative term. However, this
is not sufficient because loosely speaking if the intensity of a pixel is zero in one
image and non-zero in another one, a multiplicative intensity correction factor
cannot fix this. The scheme used in this manuscript is similar to [5], except that
a more generalized regularization expression is employed. Furthermore, the more
efficient Gauss-Newton approach in a multi-level implementation [13,15] is used
as opposed to the steepest descent method in [5].

2 Data

The dataset consists of 10 cases from two centres: the University of Utah and
University of Auckland. For each case, a single short axis slice time series at rest
and at stress is provided. The Utah datasets were acquired using a saturation-
recovery radial turboFLASH sequence at rest and during adenosine infusion
(140 μg/kg/min), as described in [3]. Contrast was 5 cc/s injection of Multihance
(Gd-BOPTA) at 0.02 mmol/kg for the rest and 0.03 mmol/kg for the stress. Four
of these subjects have known coronary artery disease. The Auckland cases were
acquired using a saturation-recovery Cartesian turboFLASH sequence at rest
and during adenosine infusion (140 μg/kg/min). Contrast was 0.04 mmol/kg
Omniscan (gadodiamide). Expert-drawn contours were also provided at a chosen
reference frame for each rest and stress case study.

3 Multi-level Joint Image Registration and Intensity
Correction

Consider the registration problem of a template image T to a reference image R,
where T is a realization of R deformed via a transformation y and the intensity
of this realization is changed via an extra additive [image] term w.

The d-dimensional reference and template images are represented by map-
pings R, T : Ω ⊂ R

d → R of compact support. The goal is to find the trans-
formation y : Rd → R

d and a compactly supported intensity correction image
w : Ω ⊂ R

d → R such that T [y] + w is similar to R, in which T [y] is the trans-
formed template image and T [y] + w is the intensity-corrected deformed image.
A formulation of the joint image registration and intensity correction of a tem-
plate image T to a reference image R can be written as the following problem.
Problem. Given two images R, T : Ω ⊂ R

d → R, find a transformation
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y : Rd → R
d and an intensity correction image w : Ω ⊂ R

d → R that mini-
mize the joint objective functional

J [y;w] := D[T [y] + w,R] + αS[y − yref] + βQ[w].

Here, D measures the dissimilarity of T [y] + w and R, and αS + βQ is a reg-
ularization expression on [y;w]. It is assumed that yref(x) = x. Furthermore,
sum of squared distances (SSD) is used as the dissimilarity measure, the elastic
regularization is applied to the transformation [12,13], and the total variation
(TV) [17,18] penalty is used on the additive intensity correction image. All of
this can be summarized as

D[T + w,R] = DSSD[T + w,R]

=
1
2

∫
Ω

(T (x) + w(x) − R(x))2 dx,

(1)

S[y] =
1
2

∫
Ω

μ〈∇y,∇y〉 + (λ + μ)(∇ · y)2 dx,

(2)

Q[w] = T Vε[w] =
∫

Ω

√
‖∇w(x)‖2 + ε dx

≈
∫

Ω

‖∇w(x)‖ dx. (3)

Here we employ a discretize-then-optimize paradigm using a Gauss-Newton
approach (see [13,15] and the FAIR software [13] for details) to minimize the
functional in Equation (1). For practical implementations of the Hessian and
Jacobian of the regularizer and the TV operators see [13,18]. We also consider
different discrete representations of the joint image registration/intensity cor-
rection problem, and address the discrete problems sequentially in the so-called
multi-level approach. Starting with the coarsest and thus inexpensive problem,
a solution is computed, which then serves as a starting guess for the next finer
discretization, see [13]. This procedure has several advantages. It adds addi-
tional regularization to the registration problem (more weight is given to more
important structure), it is very efficient (typically, most of the work is done on
the computationally inexpensive coarse representations, and only a refinement
is required on the costly finest representation), it preserves the optimization
character of the problem and thus allows the use of established schemes for line
searches and stopping. The use of this technique leads to optimal schemes in the
sense that only a fixed number of arithmetic operations is expected for every
data point.

4 Results and Validation

We performed a series of pair-wise intensity-based registration experiments using
the described method taking the reference image R(x) as the frame for which the
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expert-drawn contour is available. Here we present an example of these experi-
ments for a pair of images in the stress case of 8-th dataset. The reference image
in Figure 1(b) corresponds to the reference in stress case of study #8 (frame
#21), and the template image Figure 1(a) is the last image in that sequence
(frame #50). Using the multi-level Gauss-Newton approach, we are not only
able to compute a reasonable displacement field Figure 1(d) but also an inten-
sity correction term displayed in Figure 1(g). Due to this intensity correction
term, we are now enabled to display the final registered and intensity corrected
image T (yc) + w(xc). In this experiment, we used the main parameters α = 50,
β = 1, ε = 1, μ = 1, and λ = 0, along with an Armijo line search [15] and a
2D linear interpolation [13]. The experimental result of our implementation is
presented in Figure 1 for level 7, and the result of the previous levels 3 to 6 are
displayed in Figure 2 (a) to (d). As it can be observed, the method has effectively
separated the intensity changes of the two images being registered.

a b c

d e f

g h i

Fig. 1. Multi-level Gauss-Newton approach to joint image registration and intensity
correction of stress dataset #8 for level 7:
(a) Template T (x) (frame #50). (b) Reference R(x) (frame #21). (c) |T (x) −R(x)|.
(d) Grid y. (e) Transformed template T (y). (f) |T (y) −R(x)|.
(g) Intensity correction |w(x)|. (h) T (y) + w(x). (i) |T (y) + w(x) −R(x)|.
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a b

c d

Fig. 2. Multi-level Gauss-Newton approach to joint image registration and intensity
correction of stress dataset #8 for levels (a) 3. (b) 4. (c) 5. (d) 6. The order of displayed
images are consistent with images displayed for the level 7 in Figure 1.

Figure 3 displays the final result for dataset #8, where the top row is relating
to the rest and the bottom row is relating to to stress cases both taking frame
#50 as the template and the corresponding references are frames #22 for rest
and #21 for the stress case. The corresponding fixed location of contours for
each case is also presented for comparison. It can be visually observed that
the contours are correctly placed on the registered template images (c) and (f)
compared to to their corresponding unregistered template images (b) and (e),
while the motion is relatively smaller in the rest image (top row) compared to
the stress image (bottom row).

Finally, Figure 4 shows results relating to dataset #8, top two rows are related
to rest, and bottom 2 rows are related to stress. The graphs on the left and right
respectively correspond to pre-registration and post-registration. Graphs on odd
rows relate to tissue and AIF curves, and graphs on even rows represent Delta
Si curves with model fits. Detailed information about obtaining these graphs is
available in [16].
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a b c

d e f

Fig. 3. Rest dataset #8:
(a) Reference (frame #22) (b) Template (frame #50) (c) Registered Template
Stress dataset #8:
(d) Reference (frame #21) (e) Template (frame #50) (f) Registered Template.

5 Discussion and Conclusion

It can be visually observed that the introduced algorithm has reasonably reg-
istered the pair of images. In addition, by comparing the tissue and AIF and
Delta Si curves in Figure 4 before (left) and after (right) registration we realize
smoother curves are obtained as a result of motion correction.

In our scheme, no prior rigid registration was performed on the acquired
datasets. Choosing the main parameters of the algorithm, i.e. α and β, can
significantly affect the result of the registration algorithm. These parameters
are required to be tuned to yield superior registration results. A larger value
of α allows less motion and attributes image intensity changes to the contrast
enhancement. Inversely, a larger value of β tends to associate any variation of
the image intensity to the motion, and allows the template image to move more
freely which may lead to physically implausible motion in its extreme. In general,
any registration algorithm requires setting a number of parameters and may fail
if the parameters are not tuned properly. Finding a right balance among the
parameters in our described algorithm proved to be challenging. Overall, the
registration of the first five cases (1-5) was found to be more challenging than
the last five cases (6-10) using our described method and we tried to further tune
the parameters for the first five cases. As expected, registration of rest cases was
found to be less challenging than the stress cases due to the fact that less motion
was present in the rest image series.
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a b

c d
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Fig. 4. Results relating to dataset #8, Top 2 rows: Rest, Bottom 2 rows: Stress, Left:
Pre-registration, Right: Post-registration, Odd rows: Tissue and AIF curves, Even rows:
Delta Si curves with model fits
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