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Introduction
A demand for higher quality and higher resolution images will always exist whether it is medical
imaging, surveillance, or simply personal leisure. The process of recovering a high-resolution
(HR) image from a set of distorted (i.e. deformed, blurry, noisy, etc.) low-resolution (LR) images
is known as super-resolution. The super-resolution problem will require the reconstruction of the
ideal HR image and an estimation of the motion between LR images. The proposed algorithm
will attempt to recover the HR image and motion estimation simultaneously using an inverse
model followed by a discretize-then-optimize approach. Elastic regularization will be used for
non-parametric motion estimation, and total variation regularization for the super-resolved image.
Due to the problem being ill-posed (i.e. many number of solutions), parameters will be introduced
as constraints to limit the possible solutions.

Mathematical Formulation
Consider a set of m low-resolution images represented by the continuous mappings y = {y1, . . . ,
ym}, y i: R2→R, the goal is to find an ideal high-resolution image f and a set of transformations
u = {u1, . . . , um}, ui: R2→R2, such that Hf [ui] is similar to y i for all i = 1, . . . , m, where H
is a linear degradation operator comprising of a blur operator and downsampling operator. In this
study, f is represented by the mapping f : Ω⊂ R2→R where Ω is the area of interest of the image.

Problem Statement. Given a set of m low resolution (p×q) images, y = {y1, . . . , ym},
find a high resolution (zp×zq, z ∈ N is a zooming factor) image f and a set of transformations
u = {u1, . . . , um} that minimizes the objective functional

J [u, f ] =

m∑
i=1

D
[
yi,Hf [ui]

]
+

m∑
i=1

αiS [ui − uref ] + βQ[f ].

Here, D
[
y i,Hf [ui]

]
is a distance measure between y i andHf [ui], S[ui-uref ] is the elastic reg-

ularizer, and Q[f ] is the total variation penalty on the computed image f imposed by Neumann
boundary conditions. α = {αi,. . . ,αm} ∈ Rm and β ∈ R are regularization parameters. It is as-
sumed that uref (x)=x where x is an evenly spaced grid. Sum of squared differences (SSD) will be
used to compute distance measure. This can be summarized as follows:

DSSD
[
yi,Hf [ui]

]
=

1

2

∫
Ω

(yi −Hf [ui])
2dx (1)

S(u) =
1

2

∫
Ω
µ < ∇u,∇u > +(λ + µ)(∇ · u)2dx (2)

Q[f ] =

∫
Ω

√
||∇f (x)||2 + εdx ≈

∫
Ω
||∇f (x)||dx (3)

Discretization. The discretization of the images will be on the pixel level to prevent loss of
information. Let x represent a discretization of Ω, and let D, S and Q represent the discretized
counterparts of the distance measure (D), elastic (S) and total variation (Q) regularizers respec-
tively. H is the discretized degradation operator, and corresponding images and grids will now be
represented by the discrete vectors yi, f, and ui. The discretized objective functional will be

J [u,f] =

m∑
i=1

D
[
yi,H[Pui]

]
+

m∑
i=1

αiS[ui − uref] + βQ[f]

=
1

2

m∑
i=1

‖yi − H[Pui]‖2 +

m∑
i=1

αiS[ui − uref] + βQ[f].

Note that the linear operator P was introduced. This is required as elastic regularization is
designed to operate on staggered grids, where coordinates are obtained by the edges of a grid.
However, pixel intensity are recorded on a grid’s cell-centers. The operator P will convert any

staggered grid used for distance measure to a cell-centered grid in order to preserve consistency.

Optimization. Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (`-BFGS) will
be the choice of optimization scheme as it is known to be well balanced between rate of conver-
gence and computational requirements. `-BFGS requires the Jacobian of the objective functional
to be explicitly defined, hence the partial derivatives are computed:
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= (rTi )(−H)

(
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for all i=1,. . . ,m, and

∂J

∂f
=

m∑
i=1

∂D

∂ri

∂ri
∂f

+ β
∂Q[f]
∂f

=

m∑
i=1

(rTi )(−H) + βdQ[f]

where
ri = yi − Hf[Pui]

Experimental Results
The first experiment involves two 32×32 images with a black circle in a white background of
radii 15 and 13. This experiment is to observe the behaviour when the algorithm is applied to a
simple object/shape. The experiment was done using the parameters α = 500, β = 200, λ = 0, µ =
1, ε = 0.1 with 100 iterations. The test results are shown in Figure 1 below.

Figure 1: Experimental results using circles of radii 15 and 13 with a zooming factor of 2: (a) y1 (Source frame
#1) (b) y1 with doubled resolution through bilinear interpolation (c) y2 (Source frame #2) d) y2 with doubled reso-
lution through bilinear interpolation. (e) u1 (f) u2 (g) Average of y1 and y2 (h) Computed image f (i) f[Pu1] (j) f[Pu2]
(k) |y1-Hf[Pu1]| (l) |y2-Hf[Pu2]|

The second experiment uses a 60-frame dataset obtained from a surveillance camera. Figure 2
displays a comparison between noiseless and noisy frames using the parameters α = 300, β = 75,
λ = 0, µ = 1, ε = 0.1 with 100 iterations. The bottom row are results obtained from the same image
sequence with Gaussian noise of σ = 1 applied. Frame 26 of 60 is used as a reference frame for
visual comparison.

Figure 2: Experimental results using 60 frames of noiseless (top row) and noisy (bottom row) images with a
zooming factor of 2: (a, f) y26 (Source frame #26). (b, g) y26 with doubled resolution through bilinear interpolation.
(c, h) Average of the 60 input frames. (d, i) Computed image f. (e, j) f[Pu26]

Conclusion and Future Work
In Figure 1, it can be observed that the algorithm was able to smooth out any rough edges that
arise from direct interpolation of LR images as show in image (h). In addition, grids (e) and (f)
show that the algorithm was able to estimate the motion between individual frames. Ideally, the
dissimilarities between the initial images and the ideal image under their corresponding transfor-
mations should equal zero (i.e. a pitch black image). Images (k) and (l) show that some small
differences still exists between the images and it is believed that this can be improved by further
adjusted the parameters used for the tests.
A real life example was used for the second experiment as shown in the series of images in Fig-
ure 2. As shown in images (d) and (i), the algorithm was able to produce results, using noisy
inputs, that are highly similar to the results produced by its noiseless counterpart. However, the
transformed grids for each frame appeared more chaotic for noisy frames compared to noiseless
frames. This was expected as it is visually, and computationally more difficult to detect true mo-
tion when there are noise in the source images.
Future works will include searching for more suitable values of α and β, as α being too large
restricts motion while β being too large blurs the computed image. There is also suspicion that
the solution found were not the global minimum, but a local minimum of the objective functional.
Techniques such as multi-level image registration may provide better initial conditions to prevent
the solution from being trapped in a local minimum. Different optimization schemes such as
Steepest Descent (SD) can also be explored to circumvent this issue.
Super-resolution with images of different modalities can be explored by using different distance
measure methods such as normalized gradient field (NGF), normalized cross-correlation (NCC),
and mutual information (MI). The proposed algorithm provides a flexible framework that enables
simple implementation of these methods, and can be further expanded to include reconstruction
of super-resolved video sequences as well.
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