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Abstract. In this paper we introduce and analyze a set of regularization expressions based
on self-similarity properties of images in order to address the classical inverse problem of image
denoising and the ill-posed inverse problem of single-frame image zooming.

The regularization expressions introduced are constructed using either the fractal image
transform or the newly developed “Nonlocal-means (NL-means) image denoising filter” of
Buades et al. (2005).

We exploit these regularization terms in a global MAP-based formulation and produce
analytical and computational solutions. Analytical comparisions are made with results based on
classical methods (e.g., fractal-based denoising and zooming, and NL-means image denoising).

1. Introduction
We consider the linear degradation model1

u = HX + n, (1)

in which H is a linear operator, u ∈ l2(Ω) is the p× q-pixel observed image, i.e.,

Ω = [1, . . . , p]× [1, . . . , q], (2)

and n ∈ l2(Ω) is additive white, independent Gaussian noise with zero-mean and some known
variance, and X ∈ l2(Ψ) is the image to be recovered such that

Ψ = [1, . . . , pz]× [1, . . . , qz]. (3)

Given u, one is interested in finding an approximation of X, to be denoted as X?. This is
normally performed by incorporating additional a priori information about the image, a method
of regularization. Given u, the approximation X? can be a minimizer (or if certain conditions
hold, the unique minimizer) of the expression

X? = arg min
X
‖HX − u‖2 + λΓ(X). (4)

1 In this paper, the notation u refers to the lexicographic representation of an image u.



This is known as the maximum a posteriori (MAP)-based formulation in statistical estimation
theory, in which Γ(X) is a regularization functional. Regularization not only acts as an algebraic
stabilizer in estimating the solutions of ill-posed inverse problems (i.e., if HTH is singular), but
it may also improve the solutions of well-posed problems, for example, in case of denoising.
Equivalently, in the Bayesian point of view, the probability density function (PDF) of the image,
serving as the prior p(X), plays the role of regularization. The simplest form of regularization,
that of Tikhonov [24], applies a uniform spatial smoothness to the outcome.

In this paper, we assume that the penalty functional has the well-known form,

Γ(X) = ‖ CX −D ‖2, (5)

so that the minimization problem becomes

X? = arg min
X
‖HX − u‖2 + λ‖ CX −D ‖2. (6)

It can be shown that
X? = (HTH + λCTC)−1(HT u + λCTD), (7)

when HTH + λCTC is non-singular.
In this paper, we show how self-similarity properties of the observed data u may be used to

construct the penalty functional Γ(X). We consider only two forms of the degradation operator
H: (i) for denoising, H = I the identity operator, and (ii) for the inverse problem of image
zooming, H = D the down-sampling operator (by a factor of z).

In Section 2, we review the role of self-similarity in inverse problems involving fractal-based
and example-based approaches. Because of its relevance to this work, the non-local(NL)-means
denoising [5, 6] will be discussed. In Section 3, we present regularization models for image
denoising and zooming based upon fractal transforms. In Section 4, a regularization scheme
based on NL-means denoising will be introduced. In Section 5, we define a contractive operator
associated with the NL-means denoising method, and provide some theoretical results. A number
of computational issues and results will be presented in Section 6. Some concluding remarks are
presented in Section 7.

2. The role of self-similarity in various imaging inverse problems
2.1. Fractal based methods
The idea of using self-similarities for image coding and compression began with the seminal
work of Barnsley and Demko [4] resulting in an intensive research activity in the 1990’s – see,
for example, [3, 12, 22, 23, 16]. In fractal image coding, one seeks to approximate a target image
u by the fixed point u? of a contractive, resolution-independent operator T called the fractal
transform. The essence of the fractal transform is to approximate smaller “range” subblocks
of an image with modified copies of (subsampled) larger“domain” subblocks. Because of the
complicated mixing nature of fractal transforms, it is not practical to search for an operator T
that minimizes the approximation error ‖ u− u? ‖. Instead, one tries to minimize the so-called
“collage error” ‖ u − Tu ‖, essentially the error in approximating the range subblocks with
modified copies of the domain subblocks. This greedy algorithm is known as “collage coding.”
Appendix (A) provides a brief discussion of the important ideas fractal coding and decoding.

More recently, the ability of fractal coding to solve other inverse problems has been
investigated. In [17, 18, 1], it has been observed that fractal-based methods have denoising
capabilities. Due to the resolution-independent nature of the fractal transform, interpolation
algorithms called “fractal zoom” have been also been developed in the literature [12, 16, 22, 23].

A major drawback of traditional fractal-based methods, however, is that their output is
quite restricted, i.e., no prior knowledge, extra regularization method or tuning (regularization)
parameters can be combined with these methods. Recently, we have examined various
possibilities to address this problem [8, 9].



2.2. Self-Similarity in various example-based approaches
A very attractive approach for solving imaging inverse problems is to exploit examples in defining
the PDF of the image instead of intuitively defining a regularization term. There are various
ways to apply examples in inverse problems as comprehensively described in [11]. In the work
of [7, 10, 25] on texture synthesis, and inpainting, examples are taken from the image itself and
have been used directly in the reconstruction procedure.

Another important example-based approach, nonlocal-means (NL-means) image denoising
[5, 6] addresses the denoising problem using examples from the noisy image itself at the
same scale with a Gaussian-type weighting scheme. The authors have demonstrated that
their algorithm has the ability to outperform classical denoising methods, including Gaussian
smoothing, Wiener filter, TV filter, wavelet thresholding, and anisotropic diffusion. Later in
this paper, we shall construct regularization expressions based on the NL-means algorithm. For
the benefit of the reader, the NL-means algorithm is briefly reviewed in Appendix (B).

3. Regularization via the fractal-transform operator
3.1. Denoising
In this subsection we consider the following problem of image denoising: Given

u = X + n, (8)

find an approximation X? of X. As mentioned earlier, it was observed [17, 18, 1] that fractal-
based methods have denoising capabilities. If we assume that T is a contractive fractal transform
of an image u, then its unique fixed point u? is an approximation of X.

We seek to improve this approximation by emphasizing the influence of the observed data u
on the reconstruction process. First of all, note that we can write u?, the unique fixed point of
the contractive fractal transform T as

u? = arg min
X
‖ X −T(X) ‖2. (9)

Now T can be represented as follows,

T(X) = MX + B, (10)

where the matrices M and B contain the “greyscale map” parameters, αi and βi, respectively, as
well as the domain-range assignments of the transform T. (See Appendix (A) for the definitions
of αi and βi.)

We consider two constructions of the regularization expression:

(i) Squared collage error,
Γ(X) = ‖ X −T(X) ‖2 (11)

(ii) Squared fixed-point approximation error,

Γ(X) = ‖ X − u? ‖2. (12)

In the first case, where Γ is the collage error, we define A = I−M, in which I is the identity
matrix, so that

Γ(X) = ‖ X −T(X) ‖2 = ‖ AX −B ‖2. (13)

Then

X? = arg min
X
‖X − u‖2 + λ‖ X −TX ‖2

= arg min
X
‖X − u‖2 + λ‖ AX −B ‖2

= arg min
X
‖X − u‖2 + λ‖ A(X − u?) ‖2. (14)



It is easy to show that
X? = (I + λATA)−1(u + λATB). (15)

In the second case, where Γ is the squared collage error, we define

Y ? = arg min
X
‖X − u‖2 + λ‖ X − u? ‖2. (16)

It can be easily shown that

Y ? =
1

1 + λ
u +

λ

1 + λ
u?. (17)

This is simply a weighted average of the measurement u and the attractor u? of the fractal
transform T. The following is an asymptotic result for the difference of the minimizers of the
above two cases.

Proposition 1.

Y ? −X? = λ(I−ATA)(u? − u) + O(λ2) as λ → 0. (18)

Proof. Note that, as λ → 0,

X? = (I + λATA)−1(u + λATB) = [I− λATA + O(λ2)](u + λATB). (19)

Therefore,

Y ? −X? =
1

1 + λ
u +

λ

1 + λ
u? −X?

= (1− λ)u + λu? + O(λ2)−X?

= (1− λ)u + λu? + O(λ2)− [I− λATA + O(λ2)](u + λATB)
= u− λu + λu? − u + λATAu− λATB + O(λ2)
= λ(u? − u + AT (Au−B)) + O(λ2)
= λ(u? − u + AT (Au−B− (Au? −B))) + O(λ2)
= λ(u? − u−ATA(u? − u)) + O(λ2)
= λ(I−ATA)(u? − u) + O(λ2). (20)

3.2. Zooming
In this subsection, we consider the following problem of image zooming: Given the observed
image data u, where

u = DX + n (21)

in which D is the downsampling by a factor of z, find an approximation of X.
In the fractal coding literature, the normal procedure of zooming an image by a factor of z

is to find a fractal transform T for u, once again by minimizing ‖ Tu− u ‖. One then “zooms”
this attractor by applying the fractal transform T (actually the operator Tz induced by T) to
an image that is z-times larger in each direction to produce the attractor u?

z.
Here, we shall use the zoomed fixed-point error to define the regularization expression, i.e.,

Γ(X) = ‖X − u?
z‖2 so that the minimization problem becomes

Y ?
z = arg min

X
‖DX − u‖2 + λ‖X − u?

z‖2. (22)



Notice that the above functional balances the consistency with original data, via the term
‖DX − u‖2, along with the self-similarity constraints encoded in u?

z. consistency with the
original data It can be shown that the solution of this minimization problem is

Y ?
z = (DTD + λI)−1(DT u + λu?

z). (23)

Some computational results are presented in Section 6.

4. A regularization scheme based on NL-means denoising
In this section we return to the denoising problem

u = X + n (24)

In Appendix (B) the NL-means algorithm of Buades et al. is briefly described, including the
determination of a weight matrix W, for some smoothness parameter h, so that Wu is the
denoised copy of u. In what follows, we make use of this matrix to improve the results.

Once again, we consider two forms for the regularization term,

(i) The collage error
Γ(X) = ‖ X −WX ‖2. (25)

(ii) The explicit approximation error

Γ(X) = ‖ X −Wu ‖2. (26)

In the first case, define

X?
m = arg min

X
‖ X − u ‖2 + λ‖ X −WX ‖2, (27)

with solution
X?

m = [I + λ(W − I)T (W − I)]−1(u). (28)

Based on the properties of the matrix W, it can be shown that [I + λ(W − I)T (W − I)] is
non-singular if λ > 0.

In the second case, define

Y ?
m = arg min

X
‖ X − u ‖2 + λ‖ X −Wu ‖2. (29)

The solution is
Y ?

m =
1

1 + λ
u +

λ

1 + λ
Wu. (30)

The minimizer Y ?
m obtained in the second case is exactly the one proposed in [5, 6] as a way of

achieving superior results by taking a weighted average of the output of the NL-means denoising
and the original image. Below is an asymptotic result on the difference of the solutions of the
above two cases.

Proposition 2.
Y ?

m −X?
m = λWT (W − I)u + O(λ2) as λ → 0. (31)



Proof. Note that as λ → 0, Y ?
m = λWu + (1− λ)u + O(λ2). Also,

X?
m = [I + λ(W − I)T (W − I)]−1u

= [I− λ(W − I)T (W − I)]u + O(λ2). (32)

Hence,

Y ?
m −X?

m = λWu + (1− λ)u− [I− λ(W − I)T (W − I)]u + O(λ2)

= λWu + u− λu− u + λWTWu− λWu− λWT u + λu + O(λ2)
= λWTWu− λWT u + O(λ2)
= λWT (W − I)u + O(λ2). (33)

5. A contractive operator associated with NL-means denoising
It is interesting to investigate the consequence of iterating the NL-means denoising operator
WX on images. In what follows, we show that W is a not a projection operator, i.e, W2X is
not neccessarily equal to WX in general.

Proposition 3. In general, W is not a projection operator, in which case limk→∞WkX is a
constant-valued image.

Proof. Note that W is a square matrix whose rows consists of nonnegative real numbers, with
each row summing to 1, i.e., W a right stochastic matrix. The Perron-Frobenius theorem for
the right stochastic matrix W ensures that there exists a stationary probability vector π such
that

πW = π. (34)

The jth element of the vector π may be computed by taking the limit

lim
k→∞

(Wk)(i,j) = πj . (35)

Hence, independent of i,

∀i ( lim
k→∞

WkX)i = lim
k→∞

∑

j

(Wk)(i,j)Xj

=
∑

j

lim
k→∞

(Wk)(i,j)Xj

=
∑

j

πjXj

= πX = c. (36)

Therefore,
lim

k→∞
WkX = (c, c, . . . , c)T (37)

is a constant-valued image. If W is a projection operator then

WX = WnX = lim
k→∞

WkX = (c, c, . . . , c)T , for any n ≥ 1, (38)

which does not hold in general. Hence, W is not a projection operator.



We now define a contracting denoising operator, S, which acts on X by producing a linear
combination of the original image, u, and WX, which is a denoised copy of X under W:

S(X) = (1− η)u + ηWX. (39)

The following proposition suggests that under certain conditions S is a contraction, implying
the existence of a unique fixed point X?

s = S(X?
s ).

Proposition 4. S is a contraction on l2(Ψ) if |η|‖W‖ < 1, in which case its unique fixed
point is given by 2

X?
s = (1− η)(I− ηW)−1u. (40)

Proof.
‖S(X1)− S(X2)‖ = |η|‖W(X1 −X2)‖ ≤ |η|‖W‖ · ‖(X1 −X2)‖. (41)

It follows that S is a contraction if |η|‖W‖ < 1. Its fixed point X?
s = S(X?

s ) must satisfy the
equation

(1− η)u + ηWX?
s = X?

s. (42)

Solving for X?
s yields the result

X?
s = (1− η)(I− ηW)−1u. (43)

It is now interesting to consider the difference between X?
s and

S(u) = ηWu + (1− η)u. (44)

Note that S(u) is the same as Y ?
m defined previously in Eq. (30) if η = λ

1+λ .

Proposition 5.

S(u)−X?
s = η

( ∞∑

n=1

ηnWn
)
(I−W)u. (45)

Proof.

S(u)−X?
s =

(
ηWu + (1− η)u

)
− (1− η)(I− ηW)−1u

= ηWu + (1− η)u− (1− η)u− (1− η)
( ∞∑

n=1

ηnWn
)
u

= ηWu− ηWu−
∞∑

n=2

ηnWnu +
∞∑

n=1

ηn+1Wnu

= −
∞∑

n=2

ηnWnu +
∞∑

n=1

ηn+1Wnu

=
( ∞∑

n=1

ηn+1(−Wn+1 + Wn)
)
u

= η
( ∞∑

n=1

ηnWn
)
(I−W)u. (46)

2 Elements of l2(Ψ) should be represented in the lexicographic representation for this statement to be meaningful.



6. Computational considerations and results
In this section we present some computational results for our fractal-based regularizations as
applied to the denoising and zooming problems outlined in Section 3.

In Figure 1 are shown some results obtained by the image denoising method (i) of Section 3.1
where the regularization function Γ is the squared fixed-point approximation error, ‖ X − u? ‖2,
cf. Eq. (16).

The “input” or observed noisy image was the 256×256-pixel image u, at the upper left. This
noisy image was fractally coded using domain and range blocks of size 16× 16 and 8× 8 pixels,
respectively. The attractor u? of the fractal transform is shown at the bottom right. Recall from
Eq. (17) that the solution Y ? to the minimization problem is given by a weighted average of u
and u?. Various weighted averages are shown in the figure, from λ = 0, corresponding to the
original noisy image u, to the limit λ →∞, corresponding to the fractal attractor u?.

We have observed that, for various test images employed in our study, the denoising method
(ii) using squared collage-error regularization function, Γ(X) = ‖ X −T(X) ‖2, yields results
X? (cf. Eq. (15)) that do not differ visually from Y ?. However, computing X? is much more
computationally intensive.

u = X + n Y ?, λ = 0.25 Y ? , λ = 0.5

Y ?, λ = 1 Y ?, λ = 2 u?, λ →∞

Figure 1. Image denoising with fractal-based regularization

In Figure 2 are presented some results obtained by the image zooming method of Section 3.2.
The 128 × 128-pixel input image u is shown at the top. The goal was to zoom it by a factor
of 2. The first column of this Figure shows the result obtained by simple pixel-replication, for
which there is a great deal of visible blockiness. The input image u was then fractally coded



u = DX + n

Pixel replication of u u?
z Y ?

z , λ = 1

Pixel replication of u u?
z Y ?

z , λ = 1

Pixel replication of u u?
z Y ?

z , λ = 1

Figure 2. Image zooming with fractal-based regularization



using 8× 8-pixel domain blocks and 4× 4-pixel range blocks. The resulting fractal transform T
was then applied an initial seed image of size 256× 256 to obtain the 256× 256-pixel attractor
u?

z. In the third column Y ?
z is shown for the fixed value of λ = 1. We have used the conjugate

gradient method to approximate Y ?
z in this image.

Due to the fact that the matrix W in the NL-means regularization schemes outlined in Section
4 and 5 are non-sparse and very large, the computation of the Y ?

m and X?
s was not feasible.

7. Conclusions
In this paper, we have introduced a set of regularization functions based on the self-similarity
of images for the purpose of image denoising and image zooming. Thse regularization functions
are based on existing schemes that exploit the self-similarity of images, namely fractal image
coding and nonlocal-means image denoising. Some analytic asymptotic results have also been
presented. Some computational results of image zooming and denoising using the fractal-based
regularization schemes have also been presented.

By no means do we believe that the schemes introduced in this paper will replace existing
efficient methods of denoising and zooming. Our method, however, introduces the possibility
of using self-similarity-based priors in some imaging problems that may well be combined with
other existing prior information about the image, possibly producing improved results. We also
believe that the ideas introduced here could be further investigated for the case of more general
degradation operators.

Appendix (A): Basics of fractal image encoding and decoding
More details on fractal image coding can be found in many places [3, 22, 17]. Fractal image
coding seeks to approximate an image by a union of spatially-contracted and greyscale-modified
copies of subblocks of itself.

If we let the image of interest be represented by an image function u(x, y), denoted by u in
the lexicographic representation, the result of the coding procedure is a contractive mapping T,
the so-called fractal transform operator. The fixed point u? of T provides an approximation to
u. In other words,

u ∼= u? = Tu?. (47)

To obtain T, the image is first partitioned (e.g., uniform, quadtree) into a set of nonoverlapping
range blocks Ci. For each range block Ci, one searches for a larger domain block PJ(i) (from an
appropriate “domain pool” P that is often common to all range blocks of the same size) such
that u

∣∣∣
Ci

(by this notation we mean, the block Ci of u) is approximated by a modified copy of

u
∣∣∣
PJ(i)

, i.e.,

u
∣∣∣
Ci

∼= φi

(
u
∣∣∣
PJ(i)

)
= φi

(
u
∣∣∣
w−1

i (Ci)

)
, (48)

where φi : R → R is a greyscale map that operates on pixel intensities and wi denotes the 1-1
contraction/decimation that maps pixels of PJ(i) onto pixels of Ci. The fractal code defining T
consists of the maps φi as well as the domain-range assignments determined during the coding
procedure. In practice, greyscale maps are assumed to be affine, i.e.,

φi(t) = αit + βi. (49)

For a given domain-range block pair PJ(i)/Ci, the optimal value of the α and β parameters is
usually accomplished by means of least-squares fitting, given u, for each i

min
J(i),αi,βi

∥∥∥∥∥u
∣∣∣
Ci

−
{

αiD
(
u
∣∣∣
PJ(i)

)
+ βi

}∥∥∥∥∥
2

(50)



At the decoding stage, given a contractive fractal transform T, we may generate its fixed
point u? by iteration un+1 = T(un), starting with an arbitrary image u0.

un+1

∣∣∣
Ci

=
(
Tun

)∣∣∣
Ci

= αiD
(
un

∣∣∣
PJ(i)

)
+ βi. (51)

in which D in this equation is the down-sampling operator. Banach’s contraction mapping
theorem guarantees that the sequence of images un converges to u?, if |αi| < 1 for any i. Some
recent investigations [1, 2] have shown that images generally possess a great deal of local (affine)
self-similarity: Given a subimage u|Ri there are often a good number of domain blocks Dj whose
subimages u|Dj approximate it as well as the “best” domain block. This feature, which never
seems to have been quantified previously, accounts for the rather small degradations that are
experienced when the size of the domain pools – the domain blocks Dj to be examined – is
decreased.

Appendix (B): Non-local-means image denoising [5, 6]
Consider the following image denoising problem

u = X + n

For any (x, y) ∈ Ω define the denoising formula

NL
[
u(x, y)

]
=

1
C(x, y)

∑

(p,q)∈Ω

w(x, y, p, q)u(p, q), such that (52)

w(x, y, p, q) = exp
(
− ‖ u(N d{(x, y)})− u(N d{(p, q)}) ‖2

2,a

h2

)
, and

C(x, y) =
∑

(p,q)∈Ω

w(x, y, p, q) (53)

where the expressions N d{. . . } and ‖ . ‖2,a are defined in the following way.

Neighborhoods: For any point in the domain of observation (x, y) ∈ Ω, define

N d
{
(x, y)

}
=

{
(x + i, y + j) | (i, j) ∈ Z2, max{|i|, |j|} ≤ d

}
. (54)

Gaussian-semi-norm: For an image I the Gaussian-weighted-semi-norm ‖ . ‖2,a is defined in
terms of the l2 norm as

‖ I ‖2,a = ‖ Ga ? I ‖2 (55)

in which Ga is a two-dimensional Gaussian kernel of standard deviation a.

The idea of the NL-means algorithm is that given a discrete noisy image u, the estimated
denoised value NL

(
u(x, y)

)
is computed as a weighted average of all the pixels in the image,

u(p, q), where the weights w(x, y, p, q) depend on the similarity of neighborhoods of the pixels x
and y, and w is a decreasing function of the weighted Euclidean distance of the neighborhoods.
The parameter h characterizes the degree of filtering. It controls the decay of the exponential
function and therefore the decay of the weights as a function of the Euclidean distances. The
NL-means algorithm not only compares the grey level in a single point but the geometrical con-
figuration in a whole neighborhood [5, 6]. When u is represented in the lexicographic order as
u, the output of the NL-means denoising can be written as Wu, where W is a right stochastic
matrix containing the associated non-negative weights.
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