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ABSTRACT 

 
A simple, computationally inexpensive, algorithm for 
performing registration of abdominal dynamic contrast-
enhanced (DCE) MRI data is presented.  It utilizes an 
intensity correction term in conjunction with a so-called 
floating reference image scheme to reduce the effects of 
contrast agent related intensity changes on registration 
performance.  Using an abdominal DCE-MRI dataset with 
simulated motion, it is shown that the algorithm is capable 
of correcting for non-rigid motion of various magnitudes.   
The registration also helped to elucidate trends in the 
enhancement curve of a small region of interest within a 
renal tumour of a dataset with un-simulated motion.  In all 
cases, evidence of visual motion was almost entirely 
eliminated after registration.    Since the algorithm does not 
involve altering image registration optimization processes, it 
is predicted that it should be easily adapted to other 
registration frameworks.   
 
Index Terms— image registration, biomedical image 
processing, magnetic resonance imaging 
 

1. INTRODUCTION 
 
Dynamic contrast - enhanced magnetic resonance imaging 
(DCE-MRI) usually involves the acquisition of images prior 
to and after the injection of a contrast agent (e.g. Gd-
DTPA).  The contrast agent diffuses out from the 
vasculature and accumulates in the interstitial space, 
producing signal increases in T1-weighted images.  These 
signal intensity increases can be converted to contrast agent 
concentrations and subsequently used with pharmacokinetic 
models in order to acquire information regarding blood 
volume and vascular permeability [7].   

DCE-MRI shows promise as a method to evaluate the 
efficacy of new anti-cancer drugs which seek to inhibit 
tumour angiogenesis [7].  A primary requirement for 
accurate DCE-MRI analysis is that image intensity changes 
are only due to the flow of the contrast agent through the 
vasculature.  However, there is always some motion present 
(e.g. breathing) which can cause changes unrelated to the 
contrast agent.  This motion results in the inaccurate 
conversion of signal intensity changes to contrast agent 
concentrations.  Consequently motion reduces the accuracy 

of blood volume and vascular permeability estimates and 
subsequent evaluations of therapeutic response [7].  

Image registration has been successfully used to 
eliminate motion within a variety of different settings but is 
particularly challenging to develop for contrast-enhanced 
datasets [4].  Traditional image registration techniques 
assume that image structures can move but that their pixel 
intensities remain constant in time.  Dynamic contrast-
enhanced datasets directly violate this assumption.  
Furthermore, motion present in images due to the flow of 
the contrast agent must not be eliminated by the image 
registration as this data is the focus of subsequent analysis.   

Here we describe a method for registering abdominal 
DCE-MRI datasets which employs signal intensity 
corrections and a floating reference image scheme.  We 
perform a preliminary quantitative validation of this 
registration technique using an abdominal DCE-MRI dataset 
with a known amount of simulated motion.     
 

2. METHODS 
 
Image registration was framed in terms of an optimization 
problem.  Consider the task of registering some moved 
image volume  to a reference image volume . A 
deformation (y) must be found that minimizes 
 
                     .                   (1) 
 

 represents the image volume  which has been 
deformed by y.   is a distance measure which quantifies the 
similarity between  and .   is a regularizing term 
which quantifies the suitability of the deformation y.  High 
values of D and S correspond to dissimilar image volumes 
and unsuitable transformations respectively.  Finally,  is a 
weighting parameter for the regularizing term.   was 
chosen to be the computationally fast sum of squared 
differences (SSD).  Traditionally it is the high sensitivity of 
the SSD to intensity changes which makes it a poor distance 
measure within the contrast-enhanced registration setting.  
However, in the presence of an intensity correction term, 
such sensitivity may be desirable.   was chosen to be 
the commonly used elastic regularizer  [2,5].      

The Flexible Algorithms for Image Registration (FAIR) 
toolkit was built upon this framework and was therefore 
used in this study to perform deformable registration [5].  
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Figure 1  2D intensity correction example from an abdominal DCE-MRI dataset. a)   b)   c)   d)   e)   f)    

 
FAIR contains a suite of interchangeable MATLAB 
functions that can be used for various image registration 
tasks.  The presented algorithm modifies input image data 
and adapts the functionality of the FAIR toolkit to better suit 
the contrast enhanced-image registration setting.  

Elastic regularizer parameters were set to the FAIR 
default of [ , ] = [1, 0] with the dataset intensities being 
scaled between 0 and 255.  The parameter  was chosen 
experimentally through trial and error and was set to 100, 
600, and 200 for registration of pre-enhancement, wash-in, 
and wash-out volumes respectively.  Multilevel optimization 
was employed in order to smooth the optimization problem 
and increase speed [5].  An initial rigid registration is 
performed prior to this optimization in order to correct for 
large-scale motion. The optimizer was chosen to be the 
limited memory Broyden-Fletcher-Goldfarb-Shanno method 
(l-BFGS) which is well suited to working with large image 
datasets [6].    
 
2.1. Intensity Correction 
 
A simple intensity correction has been developed in order to 
partially account for the intensity differences between image 
volumes within the contrast-enhanced setting.  Instead of 
finding the deformation that optimally matches  and  in 
terms of (1), we search for the deformation that optimally 
matches  and  where  
 
                                                                         (2) 
 
                                                       (3) 
 
and  is a Gaussian blurring kernel with zero mean  

and standard deviation .  The resulting optimal 
deformation is then applied to the original image volume . 

The standard deviation  was defined such that full-
width half max was half of the kernel size.  The kernel size 
was chosen to be 150.4mm by 150.4mm by 40mm in the 
superior-inferior (S/I), left-right (L/R), and anterior-
posterior (A/P) directions respectively.  This size was 
chosen to be large enough to ensure that the correction term 
did not contain high-contrast edge information.  Such 
information can be spatially inaccurate up to the magnitude 
of the motion present between the two image volumes.  
Furthermore the intensities may not reflect the actual 
enhancement since structures do not overlap perfectly in the 
initial subtraction volume.  Consequently this information is 
significantly blurred in order to reflect its high uncertainty.   

The correction term reduces the contribution of 
intensity differences caused by the contrast agent to the SSD 
distance measure.  Consequently unenhanced regions of the 
image volume play a greater relative role in informing the 
image registration.   This is desirable since intensity changes 
in these regions are solely due to patient motion which 
presents a much simpler registration task.  An example is 
illustrated in figure 1 using a coronal slice from a 3D 
abdominal T1-weighted DCE-MRI dataset acquired with a 
fast spoiled gradient-echo sequence (FSPGR).  Figures 1c 
and 1f show how the relative enhancement between the two 
images is reduced after intensity correction.   

The intensity correction should not need to be applied 
when registering volumes acquired prior to the injection of 
the contrast agent.   However, there are significant intensity 
changes in wash-in and to a lesser extent in the wash-out 
enhancement phases where the intensity correction is 
needed. 
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2.2. Registration Scheme 
 

In an effort to further minimize the intensity differences due 
to contrast enhancement between  and , we employ a 
floating reference image registration scheme (figure 2). 
Consider a DCE-MRI dataset , i = 1…n, where  
corresponds to the i-th MRI volume acquired in time.  Let 

 be a single volume selected from .  First, the two 
volumes adjacent in time to  ( ,  are registered 
to , producing  and  .  Next,  and 

  are registered to  and   
respectively producing  and  .  This 
process continues until all the volumes have been registered. 
 

 
Figure 2 Floating reference image registration scheme.  Arrows 
denote registration.  Subscript ‘reg’ denotes registered version 
of the volume.  

Here the reference image volume for every registration is 
different.  Assuming accurate registrations, all  should be 
registered to  since this scheme proceeds serially.  

We chose  to correspond to the image volume with 
the highest average voxel intensity.  As the contrast agent 
flows into the patient, anatomical structure becomes more 
apparent in the image volumes.  Therefore  is liable to 
contain the most detail and may serve as a suitable starting 
point for this scheme.  
 
2.3 Preliminary Validation 
 
Our preliminary validation approach involves both 
subjective and quantitative components.   The proposed 
image registration algorithm is first applied to real clinical 
datasets.  The results are visually evaluated to ensure that 
the algorithm can account for real patient motion and 
complex enhancement patterns.  For quantitative validation, 
a known amount of simulated motion is added to a 
motionless clinical dataset.  Image registration is 
subsequently applied and the recovered transformation is 
compared with the known simulated motion field. 

The motionless dataset needs to be constructed since in 
principle, there is always some motion present in DCE-MRI 
datasets. To construct the motionless dataset, two 
approaches were combined.  First, the aforementioned 
image registration technique was applied to the dataset to 

remove the bulk of the naturally occurring motion.  Second, 
principal components analysis (PCA) reconstruction was 
applied to the registered dataset to further eliminate motion.   

In short, a dataset can be expressed as a linear 
combination of the eigenvectors of its covariance matrix.  
The principal components are the terms in this linear 
combination which correspond to the eigenvectors with the 
largest associated eigenvalues.  These principal components 
contain the primary sources of variance within the dataset.  
If it is assumed that changes in the dataset due to motion are 
uncorrelated then reconstructing the data using a linear 
combination of only the principal components can eliminate 
motion [3, 4].  Motion in abdominal datasets is largely due 
to respiration and is therefore at least partially correlated in 
time.  Consequently this technique may not be able to 
remove highly correlated respiratory related motion.   The 
registration performed prior to PCA reconstruction helps to 
mitigate this potential problem by reducing the magnitude of 
correlated motion. Simulated motion was introduced to the 
motionless dataset using a coarse approximation to the non-
rigid S/I motion introduced by the diaphragm combined 
with rigid rotations about the S/I axis.  The S/I 
displacements were modelled by  

 
                           (4) 

 
where  corresponds to L/R position,  corresponds to time, 

is the maximum S/I displacement,  is the 
maximum L/R extent of the patient, and  is the time taken 
per full breath (inhale and exhale).  The angle of the rigid 
rotation was modelled by 
 
                                                        (5) 

 
where the maximum rotation angle is given by .  
Rotations are larger if a deeper simulated breath is taken.  
The parameters  and were chosen to be 15mm 
and 1.5  respectively.   

To better simulate natural respiration, the respiration 
rate (1/ ) was sampled from a normal distribution with       

  = 15 breaths/second [1] and  = 2 breaths/second.  A new 
respiration rate was sampled after every simulated breath. 
 
2.4. Patient Data 
 
10 clinical DCE-MRI scans of the abdomen were used to 
develop and test the proposed image registration algorithm. 
The scans were acquired with a T1-weighted FSPGR 
sequence.  Spatial resolution was 1.88mm by 1.88mm by 
8mm in the S/I, L/R, and A/P directions respectively. 
Temporal resolution was approximately 3.7 seconds per 
volume.   
 
 

563



 
Figure 3 Example of a subtraction image before and after 
registration.  

3. RESULTS 
 

Registration effectively eliminated visual motion within 
all 10 clinical datasets.  Inspection of subtraction images 
revealed significant reduction in motion artifacts (figure 3).    
A 5 voxel region of interest (ROI) was selected within a 
highly enhancing renal tumour present within one of the 
datasets in order to investigate registration effects on 
intensity-time curves.  The ROI average intensity-time curve 
acquired from subtraction image volumes was plotted before 
and after registration (figure 4).  Prior to registration, the 
actual ROI moves in and out of the investigated region 
obscuring trends.  After registration, a more typical 
intensity-time curve emerged.   

Preliminary validation was performed using one of the 
previously registered clinical datasets.  The registered 
dataset was reconstructed using the first four principal 
components.  Remaining visual motion was limited to the 
flow of the contrast agent through the patient, which 
maintained similar complexity to the flow within the actual 
DCE-MRI dataset.   

Simulated motion was introduced to the motionless 
dataset.  The distances of the voxels from their initial 
location in the motionless dataset were calculated before and 
after registration (table 1).   

Table 1 Average distance of voxels from their initial location, 
before and after registration.  Standard deviations are shown 
in brackets.   

Type Distance (mm) 
 Before After 

S/I 6.1(4.6) 2.1(2.1) 
A/P 2.0(1.7) 1.8(1.4) 
L/R 0.4(0.3) 1.1(1.9) 

Total 6.7(4.6) 3.4(2.7) 
 

After image registration, the average distance and standard 
deviation decreased in the S/I and A/P coordinate directions, 
but increased in the L/R direction.  Approximately half of 
the total voxel distance (motion), was corrected for by 
image registration.  Despite this remaining discrepancy, no   

  

 
Figure 4 Effect of registration on the intensity-time curve of a 5 
voxel ROI.   

easily identifiable visual motion was present within the 
registered result.   

The total distance was then further broken down by 
volume to investigate how different motion magnitudes 
were addressed by the image registration (figure 5).  The 
algorithm was able to correct for different magnitudes of 
motion, but had a more pronounced effect on voxels which 
had been displaced by higher magnitudes.   

 
4. DISCUSSION 

 
The algorithm was applied to clinical datasets with and 

without the use of intensity correction.  Without intensity 
correction, registration failed to eliminate motion as was 
evident by little apparent reduction in visual motion as well 
as output deformations which led to limited voxel 
displacements. Registration performed marginally better in 
the wash-out phase since intensity changes are more gradual 
than in the wash-in phase.  With intensity correction, 
registration performed well in removing visual motion in the 
clinical datasets and the validation test case.  Despite this, 
the average remaining motion within the test case was found 
to be on the order of 3.4mm (  = 2.7mm).  This remaining 
discrepancy could be attributed to poor regularizer 
performance.  Within a near uniform intensity structure, 
voxels do not necessarily have to be mapped to their original 
location for the SSD distance measure to be reduced.  In this 
case, the burden of ensuring proper voxel mapping falls 
upon the regularizer.  Therefore if the regularizer fails, the 
registered dataset could appear well-registered despite the 
validation showing otherwise.  

Furthermore, the multi-level image registration was 
allowed to proceed until a 128 by 128 by 32 discretization 
level was reached.  This corresponded to a consideration of 
3.76mm by 3.76mm by 3mm voxels.  Therefore it is not 
surprising that the registration was unable to correct motion 
to much below the dimensions of the voxels.   This may also 
explain the increase in voxel distance in the L/R coordinate 
direction since the uncorrected distance was well below the 
size of the voxel dimensions.  Increases in registration 
accuracy are predicted upon permitting a higher final level  
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Figure 5 Distribution of the distance of the voxels in    from their initial location in the motionless dataset, before and after 
registration.   Box plots indicate the first three quartiles.  Whiskers encompass 95% of all values.   The average value is displayed 
with a thick black line.   .

of optimization.  A higher level was not investigated within 
this study because the FAIR toolkit has not yet been 
optimized for computation speed. Addressing higher 
discretization levels became increasingly computationally 
prohibitive.      

Despite this, the proposed registration algorithm is 
simple and computationally inexpensive as it only involves 
a preparation of the data prior to registration and does not  
alter the underlying optimization framework in any way.     
Consequently, it should be easily adaptable to other image 
registration frameworks.  Furthermore there are 
opportunities for parallelizing this algorithm.  Image 
volumes could be registered in parallel, and then the 
resulting deformations could be combined afterwards to 
register each volume to the reference volume.  This could 
increase the computation speed by a factor equal to the 
number of computer threads.  Future work will be 
undertaken to incorporate the intensity-correction term into 
the optimization procedure such that it is re-estimated after 
each iteration. 

The procedure to create the motionless dataset for 
validation was very effective at removing visual motion.  It 
must still be determined whether this algorithm is 
appropriate for use in registering real patient datasets for the 
purposes of DCE-MRI analysis.  Quantitative validation 
may be difficult within this context as a gold standard is not 
available. 

 
5. CONCLUSIONS 

 
We have presented a simple, computationally inexpensive, 
algorithm for registering abdominal DCE-MRI datasets.  
Visual motion was significantly reduced within the 
investigated datasets, and a positive effect on the intensity-
time curve of a small ROI was observed. The algorithm 
addressed approximately half of the total motion simulated 
within the preliminary quantitative validation and no easily 

identifiable visual motion was present after registration.  
The technique should be easily applied within other image 
registration frameworks.  Further validation using datasets 
from different anatomic sites is necessary and will be 
undertaken in the future.  Improved motion models based on 
finite element modeling will be used to further verify utility.  
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