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Abstract This paper revisits the concept of fractal image
coding and the contractivity conditions of the fractal trans-
form operator. All such existing conditions are only suffi-
cient. This paper formulates a necessary and sufficient con-
dition for the contractivity of the fractal transform operator
associated to a fractal code. Furthermore, analytical results
on the convergence of the fractal image decoding will be
derived.
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1 Introduction

In the late-1980’s, M. Barnsley of Georgia Tech, with
coworkers and students, showed that sets of contractive
maps with associated probabilities, called Iterated Function
Systems (IFS), could be used not only to generate fractal
sets and measures but also to approximate natural objects
and images [2]. This gave birth to fractal image compres-
sion, which would become a hotbed of research activity over
the next decade. Historically, most fractal image coding re-
search focused on its compression capabilities, and many
theoretical aspects of the research were dismissed. This pa-
per focuses on various unanswered theoretical questions in
fractal image coding (with the acknowledgment that it no
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longer furnishes a competitive method of image compres-
sion).

In Sect. 2, we will present the precise definition of the
fractal transform operator T and shall state that under suit-
able conditions the operator T is contractive. Hence, us-
ing Banach’s contraction mapping principle, T has a unique
fixed point u� such that T (u�) = u�.

There are a few existing sufficient contractivity condi-
tions for the fractal transform operator in the literature
[4, 7–9], which are only sufficient and not necessary. S.K.
Alexander has stated [1] that such contractivity conditions
are never checked in practice. Y. Fisher has suggested [7, 8]
that based on “computational experiments” the operator T

is converging if the scaling coefficients αi (introduced in the
next section) are in the interval [−√

2,
√

2]. Furthermore,
M. Ghazel has stated [10, 11] that “In fact, for block-based
fractal schemes, it is indeed very difficult to derive a tight
necessary contractivity requirement on the IFS coefficients”.

More recently, M. Ghazel et al. [12] have stated that
“There is one complication, however, in that the contrac-
tivity of the fractal transform operator T is dependent upon
the α scaling coefficients. There is no simple relationship
between the L2 contractivity factor of T and the α coeffi-
cients because of the local nature of the parent-child map-
pings”. An aim of this paper is to reveal that indeed there
exists a simple relationship between the contractivity factor
of the fractal transform operator T and the scaling coeffi-
cients which has been unknown for many years.

In Sect. 3, we will obtain a necessary and sufficient con-
dition for the contractivity of the fractal transform operator
on R

N×N in the main theorem of this paper. It will be shown
that a corollary of the main theorem is the same sufficient
contractivity conditions for the fractal transform operator,
reported by B. Forte et al. [9] for the continuous case.
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In Sect. 4, we will ask the question whether contractiv-
ity of T is a requirement for the convergence of the fractal
decoding scheme. A counter-example will be presented to
show that the fractal decoding scheme may converge even if
T is not a contraction.

Furthermore, we state analytical conditions under which
the fractal decoding iteration converges. In addition, we de-
rive a theorem in this non-contracting yet converging case,
corresponding to the Collage Theorem (4). Finally, we will
prove that this result generalizes the Collage Theorem and
will refer to the result as “The Generalized Collage Theo-
rem”.

2 Block-Based Fractal Image Coding

More details on fractal image coding can be found in many
places [2, 3, 5–8, 12, 14]. In this section, we outline the
most important features of fractal image coding. Fractal im-
age coding seeks to approximate an image by a union of
spatially-contracted and greyscale-modified copies of sub-
blocks of itself.

2.1 Fractal Image Encoding

Let an image of interest be represented by an image func-
tion u(x, y), denoted by u ∈ R

N×N . Briefly, the result of the
coding procedure is a contractive mapping T , the so-called
fractal transform operator. The fixed point u� of T provides
an approximation to u. In other words, u ∼= u� = T (u�). We
need to take a few steps to define the operator T and study
its properties.

2.1.1 Partitioning

First, consider a partition of ϒ = [1, . . . ,N]×[1, . . . ,N ] on
which the image is defined into nonoverlapping subblocks
{Ci}, i ∈ C, referred to as range (or child) subblocks, such
that ϒ =⋃

i∈C Ci. Also, consider a new partition of ϒ by
typically larger subblocks {Pj }, j ∈ P, referred to as do-
main (or parent) subblocks, such that ϒ =⋃j∈P Pj . In this
paper, we assume that the elements {Pj } do not mutually
overlap, which is not always a requirement in many texts.
For example, we may assume that the square blocks Ci and
PJ(i) are, respectively of size K × K and sK × sK , where
each of these blocks belongs to the corresponding square
grid partitions of ϒ , for positive integers K and s. In this
specific case, we need to assume sK divides N to guarantee
the existence of these grids.

2.1.2 Block and Parameter Search

For each i ∈ C associated with each range subblock Ci , one
searches for the index J (i) ∈ P of a corresponding domain

subblock PJ(i) in a manner that u(Ci) is well approximated
by a spatially-contracted and greyscale-modified copy of
u(PJ(i)), i.e., u(Ci) ∼= φi(D(u(PJ(i)))). Here, φi : R → R

are greyscale maps that operate on pixel intensities and
are usually assumed to be affine, i.e., φi(t) = αit + βi .
Also, D is the decimation operator of factor s defined as
D : R

sK×sK → R
K×K , for any x ∈ R

sK×sK

(Dx)(m,n) = 1

s2

∑

1≤m′,n′≤s

x(s(m − 1) + m′, s(n − 1) + n′),

∀1 ≤ m,n ≤ K.

Therefore, for each i ∈ C one finds some (J (i), αi, βi) =
(j,α,β), j ∈ P, (α,β) ∈ � that minimize
∥
∥u(Ci) − {αD

(
u(Pj )

)+ β
}∥
∥. (1)

Here, ‖.‖ denotes the Frobenius (or Euclidean) norm, and
� ⊂ R

2 denotes the feasible (α,β) parameter space, which
will be suitably restricted. Note that such a minimization
problem may have non-unique solutions. The solution of
the above minimization problem is performed by exhaus-
tive searching over all j ∈ P for each i ∈ C . For a domain-
range block pair Pj/Ci , the optimal value of the α and β pa-
rameters may depend on the parameter space �. Typically
this may be accomplished by means of least-squares or con-
strained least-squares method. If � = R

2, i.e., when no con-
straint is assumed on the parameters α and β and the pair of
blocks u(Ci), D(u(Pj )) are respectively represented by vec-
tors uci

and upj
of the same size, it is easy to show that (e.g.

see [11]) the minimizing parameters of the above expression

for some fixed i ∈ C and j ∈ P is given by αi = Cov(upj
,uci

)

Var(upj
)

,

βi = E(uci
)−αiE(upj

), in the case that Var(upj
) �= 0. Fur-

thermore, in the case that Var(upj
) = 0 and the elements of

upj
are all non-negative, αi = 0, βi = E(uci

) are some non-
unique minimizing parameters.

2.1.3 Fractal Transform Operator

We can summarize that a fractal code of the image u ap-
proximated in the outlined fashion consists of {J (i), αi, βi},
for all i ∈ C. To introduce the fractal transform opera-
tor using the obtained fractal code, it is required to define
one more ingredient, the so-called block mapping. For each
i ∈ C, define a block mapping wi , from PJ(i) to Ci such
that Ci = wi(PJ(i)). If Ci is a block of size K × K , and
PJ(i) is of size sK × sK then wi relates every s × s block
of PJ(i) to the corresponding 1 × 1 pixel in Ci . More pre-
cisely, ∀i ∈ C and 1 ≤ px,py ≤ sK , wi(PJ(i)(px,py)) =
Ci(�px

s
, �py

s
), which is equivalent to ∀i ∈ C, (x, y) ∈ ϒ ,

and 1 ≤ cx, cy ≤ s,

wi(PJ(i)(s(x − 1) + cx, s(y − 1) + cy)) = Ci(x, y).
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Such a wi is not 1–1 and by notations w−1
i (Ci) and

w−1
i (x, y) for some (x, y) ∈ Ci , we respectively mean the

inverse images of Ci and (x, y) under wi . The former would
simply be PJ(i) and the latter is an s × s block in the corre-
sponding PJ(i). Hence,

u(Ci) ∼= φi

(
D
(
u(PJ(i))

))= φi

(
D
(
u(w−1

i (Ci))
))

. (2)

Let us now assume that we have computed a fractal code
of an image function u according to (1). Because of the
nonoverlapping nature of the partition by the range sub-
blocks Ci ’s, we may define T ,

u(x, y) ∼= (T (u))(x, y) =
∑

i∈C

φi

(
D
(
u(w−1

i (x, y))
))

, (3)

for every (x, y) ∈ ϒ. The image function u is thus ap-
proximated as a sum of spatially-contracted and greyscale-
distorted (φi ) copies of its blocks. This T will be referred to
as the fractal transform operator of u. Under suitable con-
ditions outlined (and further extended by the author) in the
next sections, the operator T is contractive in R

N×N [4].
As such, using Banach’s contraction mapping principle,
there will exist a unique fixed point u� ∈ R

N×N such that
T (u�) = u�.

2.1.4 Collage Theorem

If the above approximation is a “good one”, then the so-
called collage distance ‖u − T (u)‖ is small. From the so-
called “Collage Theorem” [4],

‖u − u�‖ ≤ 1

1 − con(T )

‖u − T (u)‖, (4)

it then follows that if u is “close” to T (u), then u is also
close to u�, the fixed point of T . Here, con(T ) ∈ [0,1) de-
notes the contraction factor of T . The quantity ‖u − u�‖ is
the error of approximation of u by u�.

2.2 Fractal Image Decoding

Once we have a fractal transform T , we may generate its
fixed point u� by a simple iteration. Starting with an ar-
bitrary image u0, one forms the iterations un+1 = T (un).
In this decoding procedure, the image subblocks un(Ci)

are replaced by modified copies φi(D(un(PJ(i)))) accord-
ing to (2). This yields,

un+1(Ci) = (T (un)
)
(Ci) = αi D

(
un(PJ(i))

)+ βi,

starting with an arbitrary image u0. Banach’s contraction
mapping theorem guarantees that the sequence of images un

converges to u�, if T is a contraction.

3 Extending the Contractivity Conditions
for the Fractal Transform Operator

In this section, we present a theorem that provides a neces-
sary and sufficient condition for the contractivity of the frac-
tal transform operator. Furthermore, we verify that the exist-
ing sufficient contractivity condition of the fractal transform
operator, reported in [9] for the continuous case, can be de-
rived as a corollary of our theorem in R

N×N . We state some
important assumptions and prove a lemma before stating our
main theorem.

Assumptions Throughout, we assume that the fractal trans-
form T is defined according to (3) with the same variables,
and the size of range and domain subblocks are respectively
K ×K and sK × sK . We also employ the space R

N×N with
the Frobenius norm throughout.

Lemma 1 For any y ∈ R
N×N and i ∈ C, ‖D(y(PJ(i)))‖ ≤

1
s
‖y(PJ(i))‖.

Proof Assume that PJ(i) is an sK × sK block and y(PJ(i))

is represented by K2 blocks each of size s × s by y
(m)
p,q for

1 ≤ p, q ≤ s, and 1 ≤ m ≤ K2. By this representation,

‖D(y(PJ(i)))‖2 =
K2
∑

m=1

[
1

s2

∑

1≤p,q≤s

y(m)
p,q

]2

.

For every 1 ≤ m ≤ K2, taking ap,q = y
(m)
p,q and bp,q = 1

s2 in
the Cauchy-Schwarz inequality

( ∑

1≤p,q≤s2

ap,qbp,q

)2

≤
( ∑

1≤p,q≤s2

a2
p,q

)( ∑

1≤p,q≤s2

b2
p,q

)

,

leads to

[
1

s2

∑

1≤p,q≤s

y(m)
p,q

]2

≤
( ∑

1≤p,q≤s2

y(m)
p,q

2
)( ∑

1≤p,q≤s2

1

s4

)

=
( ∑

1≤p,q≤s2

y(m)
p,q

2
)(

1

s2

)

.

Hence, taking the sum over m yields

K2
∑

m=1

[
1

s2

∑

1≤p,q≤s

y(m)
p,q

]2

≤ 1

s2

K2
∑

m=1

( ∑

1≤p,q≤s2

y(m)
p,q

2
)

.

Substituting the equivalent values for the left and right sides
gives,

‖D(y(PJ(i)))‖2 ≤ 1

s2
‖y(PJ(i))‖2.
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Fig. 1 Partitioning of C. Two elements of the partition are shown on
the right

Finally taking the square root of both sides of this expression
completes the proof. �

Now, we are ready to state the main theorem of this paper.

Theorem 1 (The Main Theorem) A necessary and suf-
ficient condition for the contractivity of T on R

N×N is

that maxj∈P{
√∑

i∈Cj
(
αi

s
)2} < 1, in which case con(T ) =

maxj∈P{
√∑

i∈Cj
(
αi

s
)2}, where Cj = {i ∈ C|J (i) = j} for

any j ∈ P.

Proof First we prove the sufficiency. For any u, v in R
N×N ,

‖T (u) − T (v)‖2

=
∑

i∈C

∑

x,y∈Ci

∣
∣φi

(
D
(
u(w−1

i (x, y))
))

− φi

(
D
(
v(w−1

i (x, y))
))∣
∣2

=
∑

i∈C

∥
∥φi

(
D
(
u(w−1

i (Ci))
))− φi

(
D
(
v(w−1

i (Ci))
))∥
∥2

.

Assuming φi(t) = αi(t) + βi as before yields

‖T (u) − T (v)‖2

=
∑

i∈C

αi
2
∥
∥D
(
u(w−1

i (Ci))
)− D

(
v(w−1

i (Ci))
)∥
∥2

=
∑

i∈C

αi
2
∥
∥D
(
u(PJ(i))

)− D
(
v(PJ(i))

)∥
∥2

=
∑

i∈C

αi
2
∥
∥D
(
(u − v)(PJ(i))

)∥
∥2

. (5)

Hence, by Lemma 1 taking y = u − v, ‖T (u) − T (v)‖2 ≤
∑

i∈C

α2
i

s2 ‖(u − v)(PJ(i))‖2. Note that {Cj }j∈P forms a par-
tition for C, i.e., Cj1 ∩ Cj2 = ∅ for distinct j1, j2 ∈ P and
C =⋃j∈P Cj (see Fig. 1). Hence,

‖T (u) − T (v)‖2 ≤
∑

j∈P

∑

i∈C|J (i)=j

(
αi

s

)2

‖(u − v)(Pj )‖2

=
∑

j∈P

∑

i∈Cj

(
αi

s

)2

‖(u − v)(Pj )‖2

=
∑

j∈P

[

‖(u − v)(Pj )‖2
∑

i∈Cj

(
αi

s

)2]

≤
∑

j∈P

[‖(u − v)(Pj )‖2]max
j∈P

{∑

i∈Cj

(
αi

s

)2}

≤ ‖(u − v)‖2 max
j∈P

{∑

i∈Cj

(
αi

s

)2}

.

Taking the square root yields,

‖T (u) − T (v)‖ ≤ ‖(u − v)‖max
j∈P

{√√
√
√
∑

i∈Cj

(
αi

s

)2
}

. (6)

Therefore the condition maxj∈P{
√∑

i∈Cj
(
αi

s
)2} < 1 satis-

fies the contractivity of T . This completes the proof of suf-
ficiency. To prove the necessity, assume that T is a contrac-
tion. Hence, there exists c < 1 such that

∀u,v ∈ R
N×N, ‖T (u) − T (v)‖ ≤ c‖u − v‖. (7)

For any j ∈ P take the pair of images u = u(j) and v =
v(j) defined in the following manner. u(j)(x, y) = 1Pj

(x, y)

for any (x, y) ∈ ϒ , where 1Pj
represents the characteristic

function on Pj . Also, take v(j)(x, y) = 0 for any (x, y) ∈ ϒ .
Using (5),

‖T (u(j)) − T (v(j))‖2 =
∑

i∈C

αi
2
∥
∥D
(
(1Pj

− 0)(PJ(i))
)∥
∥2

=
∑

i∈C

αi
2
∥
∥D
(
(1Pj

)(PJ(i))
)∥
∥2

.

Breaking the sum i ∈ C over two disjoint sets i ∈ C, J (i) = j

and i ∈ C, J (i) �= j yields

‖T (u(j)) − T (v(j))‖2

=
∑

i∈C,J (i)=j

αi
2
∥
∥D
(
(1Pj

)(PJ(i))
)∥
∥2

+
∑

i∈C,J (i)�=j

αi
2
∥
∥D
(
(1Pj

)(PJ(i))
)∥
∥2

=
∑

i∈C,J (i)=j

αi
2
∥
∥D
(
1Pj

)∥
∥2 =

∑

i∈C,J (i)=j

αi
2 1

s2
‖1Pj

‖2

= ‖1Pj
‖2

∑

i∈C,J (i)=j

(
αi

s

)2

= ‖1Pj
‖2
∑

i∈Cj

(
αi

s

)2

.



190 J Math Imaging Vis (2009) 35: 186–192

Also, ‖u(j) −v(j)‖ = ‖1Pj
−0‖ = ‖1Pj

‖. Hence for any j ∈
P, replacing u = u(j) and v = v(j) in (7) gives ‖T (u(j)) −
T (v(j))‖ ≤ c‖u(j) − v(j)‖, and replacing the equivalent val-

ues we just found yields ∀j ∈ P, ‖1Pj
‖
√∑

i∈Cj
(
αi

s
)2 ≤

c‖1Pj
‖, for some c < 1. Cancelling the positive value ‖1Pj

‖
from sides of the inequality yields
√
√
√
√
∑

i∈Cj

(
αi

s

)2

≤ c < 1, (8)

for any j ∈ P. Hence, maxj∈P{
√∑

i∈Cj
(
αi

s
)2} < 1. This

completes the proof of necessity. Finally to prove con(T ) =
maxj∈P{

√∑
i∈Cj

(
αi

s
)2}, assume that T is a contraction on

R
N×N and con(T ) is defined as the infimum taken over all

of the possible contractivity factors of T . Because T is a
contraction, the necessity condition we just proved satis-

fies maxj∈P{
√∑

i∈Cj
(
αi

s
)2} < 1. Now, we know this in-

equality holds and observe that (6) states ‖T (u) − T (v)‖ ≤
‖(u − v)‖maxj∈P{

√∑
i∈Cj

(
αi

s
)2}. This shows that the ex-

pression maxj∈P{
√∑

i∈Cj
(
αi

s
)2} is a contractivity fac-

tor of T , and hence con(T ) which is the infimum over
all possible contractivity factor of T satisfies con(T ) ≤
maxj∈P{

√∑
i∈Cj

(
αi

s
)2}. It is well-known that the infimum

of all contractivity factors of T , denoted by con(T ), is it-
self a contractivity factor of T . Hence, taking c = con(T )

in (8) gives maxj∈P{
√∑

i∈Cj
(
αi

s
)2} ≤ con(T ). Therefore,

con(T ) = maxj∈P{
√∑

i∈Cj
(
αi

s
)2} < 1. This shows that

the smallest possible contractivity factor of T is con(T ) =
maxj∈P{

√∑
i∈Cj

(
αi

s
)2}, which will be referred to as the

contractivity factor of T . �

Corollary 1 A sufficient condition for contractivity of T

on R
N×N is αmax < s√

Cmax
where αmax = maxi∈C |αi | and

Cmax = maxj∈P |Cj |.

Proof Assuming αmax < s√
Cmax

yields

√
√
√
√
∑

i∈Cj

(
αi

s

)2

≤
√
√
√
√
∑

i∈Cj

(
αmax

s

)2

=
(

αmax

s

)√
|Cj |

<

(
s√

Cmax

1

s

)√
|Cj | <

√|Cj |√|Cmax| ≤ 1.

Therefore, the sufficient contractivity condition of Theo-
rem 1 is satisfied. �

Note that Cmax is the maximum number of times any sin-
gle domain block is mapped to some range block. In the

worst case, when all of the range blocks are mapped from a
single domain block, Cmax would be equal to the number of
all range blocks, or |C|. This leads to αmax < s√

Cmax
= s√|C| .

However, in a typical situation where each domain block is
related to only a few range blocks Cmax is small and the αis
can be relaxed and take larger values in magnitude up to

s√
Cmax

.

Corollary 2 T is a contraction on R
N×N if

√∑
i∈C(

αi

s
)2

< 1.

Proof Cj ⊆ C,∀j ∈ P. Hence, maxj∈P{
√∑

i∈Cj
(
αi

s
)2} ≤

√∑
i∈C(

αi

s
)2 < 1, which satisfies the sufficient contractivity

condition given in Theorem 1. �

This simple corollary we just proved gives sufficient con-
tractivity condition of T on R

N×N and has the same form of
the sufficient condition given in [9] for the continuous case.
Theorem 1 that we proved earlier was a stronger statement,
i.e., a more relaxed sufficient condition for the contractivity
of T .

4 Convergence Results for the Fractal Transform
Operator

The contractivity of T is sufficient for the convergence of the
fractal decoding scheme. It is, however, not always neces-
sary. In this section, we derive analytical results on the con-
vergence of the fractal decoding. The following simple ex-
ample shows that the fractal decoding scheme may be con-
vergent to a unique limit independent of the starting point
even when T is not a contraction.

Example 1 Consider an image u = [ 1 0
0 0

]
containing only

4 pixels with the corresponding intensities in the matrix,
and a simple associated fractal transform operator T de-
fined in the following way. The only 2 × 2 domain block
equals the whole image u and the four range blocks are of
size 1 × 1 corresponding to the four pixels of the image.
Hence, a decimation factor of s = 2 is considered. Assume
the αi values corresponding to a mapping of the decimated
domain block (the whole image) to every range block (pixel)
are summarized in the matrix

[ 3 0
0 0

]
and the associated βi

values are given by
[ 1/4 0

0 0

]
. Hence, for any x = [ x1 x2

x3 x4

]
,

T (x) = T
([ x1 x2

x3 x4

])= [ 1+3(x1+x2+x3+x4)

4 0
0 0

]
. It is easy to verify

that u is the unique fixed point of T and T (u) = u. However,

maxj∈P{
√∑

i∈Cj
(
αi

s
)2} =

√
( 3

2 )2 = 1.5 > 1 and T is not a

contraction on R
2×2 with the Frobenius norm. One can also
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directly verify that T is not a contraction, e.g.,

∥
∥
∥
∥T

([
1 1
1 1

])

− T

([
0 0
0 0

])∥
∥
∥
∥

=
∥
∥
∥
∥

[
3 0
0 0

]∥
∥
∥
∥= 3 >

∥
∥
∥
∥

[
1 1
1 1

]

−
[

0 0
0 0

]∥
∥
∥
∥= 2.

However, it can be easily verified that independent of u0 the
iterative sequence of images un+1 = T (un) converges to u.

It is now understood that all fractal transforms will be
written in matrix notation. Given T we can define a corre-
sponding T acting on x such that T (x) is T (x) represented
in the vector format. We also take advantage of writing x
in the vector format, so that operator T can be written as
T (x) = Mx + B. Such matrix representation of the fractal
transform operator has been introduced in [13]. Here, M is
an N2 × N2 matrix and both x and B are vectors of dimen-
sion N2 × 1. Matrix M carries the αi information and also
depends on s. B contains the information of βi , all in the ap-
propriate locations. Recall that αi and βi were the parame-
ters of the greyscale maps. We are seeking conditions under
which the iterations un+1 = T (un) converge independent of
the initial arbitrary image u0. In the vector-matrix notation,
the iterative scheme reads

un+1 = Mun + B. (9)

The following proposition proved in [13] gives a useful suf-
ficient condition for the convergence of the fractal decoding
scheme.

Proposition 1 [13] A sufficient condition for the conver-
gence of the fractal decoding scheme un+1 = T (un) inde-
pendent of the starting image u0 is |αi | < 1, ∀i ∈ C.

Although this sufficient condition may be useful in some
cases, it is not necessary for the convergence of the fractal
decoding scheme. Example 1 is a case for which the fractal
decoding scheme converges independent of the starting im-
age, yet there exists a value of αi = 3 > 1 and the sufficient
condition of Proposition 1 is not satisfied. The convergence
of the fractal decoding scheme to a limit independent of the
starting image is given by the condition ρ(M) < 1, (where
ρ(M) is the spectral radius of M) based on the following
well-known proposition.

Proposition 2 [13, 15, 16] The linear iterative scheme
in (9) converges to a limit independent of u0 if and only if
ρ(M) < 1.

Finally, the fact that the fractal decoding process
may converge to a limit, even if the condition

maxj∈P{
√∑

i∈Cj
(
αi

s
)2} < 1 is not satisfied, is due to

ρ(M) < 1 for the associated fractal code. We can gener-
alize the Collage Theorem (4) to include cases for which the
fractal decoding scheme is converging to a limit while T is
not a contraction.

Theorem 2 (The Generalized Collage Theorem) Assume
the iterative sequence un+1 = T (un) converges to u� inde-
pendent of u0. Then

‖u − u�‖ ≤ ‖u − T (u)‖ · ‖(IN2×N2 − M)−1‖2, (10)

where ‖.‖2 represents the matrix 2-norm.

Proof Considering the fractal transform operator in matrix
notation, and using induction for any k ∈ N, yields T k(u) =
Mku + (

∑k−1
m=0 Mm)B. Hence for any k ∈ N

‖u − T k(u)‖ =
∥
∥
∥
∥
∥

u − Mku −
(

k−1∑

m=0

Mm

)

B

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

k−1∑

m=0

(Mm − Mm+1)u −
(

k−1∑

m=0

Mm

)

B

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

k−1∑

m=0

Mm
[
(IN2×N2 − M)u − B

]
∥
∥
∥
∥
∥

≤ ‖(IN2×N2 − M)u − B‖ ·
∥
∥
∥
∥
∥

k−1∑

m=0

Mm

∥
∥
∥
∥
∥

2

.

The assumption that the sequence un converges to u� inde-
pendent of u0 is equivalent to ρ(M) < 1. If ρ(M) < 1, the
limit of

∑k−1
m=0 Mm as k → ∞ exists and equals (IN2×N2 −

M)−1 [15]. Hence, taking the limit k → ∞ and converting
to the non-vector notation yields

‖u − u�‖ ≤ ‖u − T (u)‖ · ‖(IN2×N2 − M)−1‖2. (11)

We can also prove that (11) implies the Collage Theorem
in (4). First we show that if T is a contraction with contrac-
tivity factor con(T ), 0 ≤ con(T ) < 1, then ‖M‖2 ≤ con(T ).
Note that for any x �= 0

‖Mx‖ = ‖Mx − M0‖ = ‖Mx + B − (M0 + B)‖
= ‖T (x) − T (0)‖ ≤ con(T )‖x‖.

Therefore, ∀x �= 0, ‖Mx‖
‖x‖ ≤ con(T ), and ‖M‖2 =

supx�=0
‖Mx‖
‖x‖ ≤ con(T ). Hence,

‖(IN2×N2 − M)−1‖2 =
∥
∥
∥
∥
∥

∞∑

m=0

Mm

∥
∥
∥
∥
∥

2

≤
∞∑

m=0

‖M‖m
2

≤
∞∑

m=0

conm
(T ) = 1

1 − con(T )

.
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Using this inequality and (11) yields the Collage Theorem

‖u − u�‖ ≤ 1

1 − con(T )

· ‖u − T (u)‖. �

To examine the derived results for the fractal transform
operator T of Example 1, note that the corresponding

M = 3

4

⎡

⎢
⎢
⎣

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ and ρ(M) = 3/4 < 1.

Hence, Proposition 2 guarantees the convergence of the iter-
ations of T for any arbitrary starting image. Therefore, the
conditions of Theorem 2 are satisfied. Furthermore,

‖(I4×4 − M)−1‖2 =

∥
∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎢
⎣

4 3 3 3
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

∥
∥
∥
∥
∥
∥
∥
∥

2

=
√

22 + 6
√

13

which can be applied in (10). Both sides of (10) are zero for
the given u and T of Example 1, because u was the unique
fixed-point of T .
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