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Abstract. We construct a complete metric space (Y, dY ) of measure-valued images, μ : X → M(Rg), where X
is the base or pixel space and M(Rg) is the set of probability measures supported on the greyscale
range Rg. Such a formalism is well suited to nonlocal (NL) image processing, i.e., the manipulation
of the value of an image function u(x) based upon values u(yk) elsewhere in the image. We then show
how the space (Y, dY ) can be employed with a general model of affine self-similarity of images that
includes both same-scale as well as cross-scale similarity. We focus on two particular applications:
NL-means denoising (same-scale) and multiparent block fractal image coding (cross-scale). In order
to accommodate the latter, a method of fractal transforms is formulated over the metric space
(Y, dY ). Under suitable conditions, a transform M : Y → Y is contractive, implying the existence of
a unique fixed point measure-valued function μ̄ = Mμ̄. We also show that the pointwise moments of
this measure satisfy a set of recursion relations that are generalizations of those satisfied by moments
of invariant measures of iterated function systems with probabilities.
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1. Introduction. Most practical as well as theoretical works in image processing and
mathematical imaging consider images as real-valued functions, u : X → Rg, where X denotes
the base space or pixel space over which the images are defined and Rg ⊂ R is a suitable
greyscale space. A variety of function spaces u ∈ F(X) may be considered depending on the
application. In standard image processing schemes, F(X) is usually assumed to be L2(X),
the space of square-integrable functions on X.

There are, however, situations in which it is useful to consider the greyscale value of
an image u at a point x as a random variable that can assume a range of values Rg ⊂ R.
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One example is the characterization of the statistical properties of a class of images, e.g.,
MRI brain scans, for a particular application, say, image compression. Another example
is statistical image processing as applied to the problem of image restoration (denoising or
deblurring). Of course, it is not enough to know the greyscale values that may be assumed by
an image u at a point x: One must also have an idea of the probabilities (or frequencies) of
these values. As such, it may be more useful to represent images by measure-valued functions,
for example, μ : X → M(Rg), where M(Rg) is the set of probability measures supported
on Rg. This is a particular example of an image being represented by a multifunction. In
this paper, we employ such a multifunction/measure-valued representation of images for the
purpose of nonlocal (NL) image processing, that is, the manipulation of the value of an image
function u(x) based upon values of u(yk) elsewhere in the image.

NL image processing has recently received a great deal of attention, fueled in part by the
exceptional success of the NL-means image denoising method [7]. Fractal image coding [20, 3]
is another example of an NL image processing method. Both of these methods, which will be
described briefly below, may be viewed under the umbrella of a more general model of affine
image self-similarity [2], in which subblocks of an image are approximated by other subblocks
of the image. Indeed, a number of other image processing methods that exploit self-similarity,
for example, [26] and the various example-based methods [9, 10, 16], also fit naturally under
this NL, self-similar framework.

Up to now, the functional representation of images has been used very successfully in the
above schemes. The general procedure is as follows: Given an image function u : X → Rg,
the value u(x) is replaced by a transformed value Tu(x) which is determined by one or more
values u(yk), where the points yk = yk(x) lie elsewhere in the image and not necessarily close
to x. (This is in contrast to standard image processing methods which are local in nature,
i.e., the points yk lie in a neighborhood of x.) The purpose of this paper is to show how
measure-valued images may be useful in these schemes, for at least a couple of reasons that
are not unrelated:

1. as a kind of intermediate step before the final “projection” of values u(yk) to produce
the transformed value Tu(x);

2. using the measure μ(x) to characterize the local self-similarity of the image I at a
point x ∈ X.

One of the main results of this paper is that we formulate a method of fractal transforms over
an appropriate space of measure-valued functions.

The structure of this paper is as follows. In section 2, we construct an appropriate complete
metric space (Y, dY ) of measure-valued images μ : [0, 1]n → M(Rg). In section 3, we outline
the general model of affine image self-similarity and how it includes NL-means denoising and
fractal image coding as special examples. We then illustrate how the space (Y, dY ) of measure-
valued images can easily be employed in “nonfractal,” i.e., same-scale, affine self-similarity
models. In particular, we consider the NL-means denoising method. The full mathematical
structure of the space (Y, dY ) is not utilized in these methods, however, since they are not
iterative in nature.

In section 4, we formulate a method of fractal transforms over the metric space (Y, dY ).
The iterative nature of this cross-scale self-similarity method utilizes more of the mathematical
structure of the space. Under suitable conditions, a fractal transform operator M : Y → Y
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is contractive, implying the existence of a unique fixed point measure μ̄ = Mμ̄. We also
show that the pointwise moments of this measure satisfy a set of recursion relations that can
be viewed as generalizations of the relations satisfied by moments of invariant measures for
iterated function systems with probabilities (IFSP).

The results of section 4 may be viewed as a natural extension of previous work [23] in which
a method of fractal transforms was formulated over image multifunctions, that is, set-valued
mappings.

For the benefit of readers who are not very familiar with fractal-based methods of coding,
we present some basics of the method of “iterated function systems” (IFS) in the appendix.
It is necessary to present the formulation of IFS-based methods over both image and measure
spaces, since the method of fractal transforms over the space (Y, dY ) presented in section 4
represents a kind of “fusion” of these two methods.

2. A complete metric space (Y, dY ) of measure-valued images. We first set up our
space of measure-valued images. In what follows, X = [0, 1]n will denote the “base space,”
i.e., the support of the images. Rg ⊂ R will denote a compact “greyscale space” of values that
our images can assume at any x ∈ X. (The following discussion is easily extended to Rg ⊂ R

m

to accommodate color images, etc.) Now let M(Rg) denote the set of all Borel probability
measures on Rg and let dH denote the Monge–Kantorovich metric on this set:

(1) dH(μ, ν) = sup
f∈Lip1(X,R)

[∫
X

fdμ −
∫

X
fdν

]
,

where

(2) Lip1(X, R) = {f : X → R | |f(x1) − f(x2)| ≤ d(x1, x2) ∀x1, x2 ∈ X}.
For a given M > 0, let M1 ⊂ M(Rg) be a complete subspace of M(Rg) such that

dH(μ, ν) ≤ M for all μ, ν ∈ M1. We now define

(3) Y = {μ(x) : X → M1, μ(x) is measurable}
and consider on this space the metric

(4) dY (μ, ν) =
∫

X
dH(μ(x), ν(x))dμL(x).

Here μL denotes Lebesgue measure on X. We observe that dY is well defined, since μ and
ν are measurable functions and dH is bounded, and so the function ξ(x) = dH(μ(x), ν(x)) is
integrable on X.

Theorem 2.1. The space (Y, dY ) is complete.
Proof. It is trivial to prove that this is a metric when we consider that μ = ν if μ(x) = ν(x)

a.e. x ∈ X. To prove the completeness we follow the trail of the proof of Theorem 1.2 in [21].
Let μn be a Cauchy sequence in Y . Thus for all ε > 0 there exists n0 such that for all n,m ≥ n0

we have dY (μn, μm) < ε. Let ε = 3−k so that you can choose an increasing sequence nk such
that dY (μn, μnk

) < 3−k for all n ≥ nk. Thus choosing n = nk+1 we have dY (μnk+1
, μnk

) < 3−k.
Let

(5) Ak = {x ∈ [0, 1] : dH(μnk+1
(x), μnk

(x)) > 2−k}.
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Then

(6) μL(Ak)2−k ≤
∫

Ak

dH(μnk+1
(x), μnk

(x))dμL ≤ 3−k

so that μL(Ak) ≤
(

2
3

)k. Let A =
⋂∞

m=1

⋃
k≥m Ak. We observe that

μL

⎛
⎝ ⋃

k≥m

Ak

⎞
⎠ ≤

∑
k≥m

μL(Ak)

≤
∑
k≥m

(
2
3

)k

=

(
2
3

)m
1 − (2

3

) .(7)

Therefore

(8) μL(A) ≤ 3
(

2
3

)m

for all m, which implies that μL(A) = 0. Now for all x �∈ X\A there exists m0(x) such that for
all m ≥ m0 we have x �∈ Am and so dH(μnm+1(x), μnm(x)) < 2−m. This implies that μnm(x)
is Cauchy for all x �∈ X\A and so μnm(x) → μ(x) using the completeness of M1. This also
implies that μ : X → Y is measurable; that is, μ ∈ Y . To prove μn → μ in Y we have that

dY (μnk
, μ) =

∫
X

dH(μnk
(x), μ(x))dμL

=
∫

X
lim

i→+∞
dH(μnk

(x), μni(x))dμL

≤ lim inf
i→+∞

∫
X

dH(μnk
(x), μni(x))dμL

= lim inf
i→+∞

dY (μnk
, μni) ≤ 3−k(9)

for all k. So limk→+∞ dY (μnk
, μ) = 0. Now we have

(10) dY (μn, μ) ≤ dY (μn, μnk
) + dY (μnk

, μ) → 0

when k → +∞.

3. A simple class of models for image self-similarity. In this section, for simplicity,
we consider images to be n1 × n2-pixel arrays. (The extension to continuous support, i.e.,
X = [0, 1]2, is rather straightforward.) In all computations, we work with normalized images,
i.e., Rg = [0, 1]. The components of our model, introduced in [2], are as follows:

1. A set R of n×n-pixel range subblocks Ri, 1 ≤ i ≤ NR, such that (i) Ri∩Rj = 0 if i �= j
and (ii) X = ∪iRi. In other words, R forms a partition of X. We let u(Ri) = u|Ri

denote the portion of u that is supported on Ri.
2. A set D of m × m-pixel domain subblocks Dj, where m ≥ n. The set of blocks D

should cover X, i.e., ∪jDj = X, but they need not be nonoverlapping.
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3. The one-to-one geometric transformations w
(k)
ij that map a domain block Dj to range

block Ri. For simplicity, we consider only affine transformations. Since both blocks are
square, there are eight possible mappings (four rotations and four inversions about the
center) which are accommodated in the index 1 ≤ k ≤ 8. (For notational convenience,
the k superscripts will be omitted unless absolutely necessary to the discussion.) In
the case that m > n, i.e., Dj is larger than Ri, it is also assumed that the contractive
map wij includes an appropriate pixel decimation operation.

4. Affine greyscale maps φ : Rg → Rg having the form φ(t) = αt + β.
Given an image function u, we examine the degree to which subimages u(Ri) are approx-

imated by subimages u(Dj), i.e.,

(11) u(Ri) ≈ φij(u(w−1
ij (Ri))) = αiju(w−1

ij (Ri)) + βij ,

which we shall write symbolically as

(12) u(Ri) ≈ αiju(Dj) + βij .

The error Δij associated with this approximation is given by

(13) Δij = min
α,β∈Π

‖u(Ri) − αu(Dj) − β‖.

Here, ‖ · ‖ denotes the L2(X) norm. In all calculations reported in this paper, the L2 distance
between two n × n image subblocks u(Ri) and v(Ri) will be the root-mean-square (RMS)
distance. Π ⊂ R

2 denotes the feasible (α, β) parameter space which is appropriate for the self-
similarity scheme being examined (one of the four cases listed below) and which guarantees
that φ : Rg → Rg. We assume that Π is compact.

There are four important cases of this self-similarity model:
1. Purely translational. Domain and range blocks have the same size, i.e., m = n. As

such, the wij are translations, and αij = 1, βij = 0. The approximation error is simply

(14) Δ(Case 1)
ij = ‖u(Ri) − u(Dj)‖.

2. Translational + greyscale shift. The wij are again translations. We set αij = 1 and
optimize over β:

(15) βij = ū(Ri) − ū(Dj), Δ(Case 2)
ij = |βij |,

where the bars denote mean values of the subblocks.
3. Affine, same-scale. The wij are translations, and we optimize over α, β. The standard

regression formulas,

(16) αij =
Cov(u(Ri), u(Rj))

V ar(u(Ri))
, βij = ū(Ri) − αijū(Rj),

apply in the case that (αij , βij) ∈ Π, the feasible parameter space for the problem. In
this case,

(17) Δ(Case 3)
ij =

[
V ar(u(Ri)) − α2

ijV ar(u(Rj))
]1/2

.

Otherwise, the problem is a quadratic programming problem over Π.
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4. Affine, two-scale. The wij are affine spatial contractions (which involve decimations
in pixel space). We optimize over α, β. If applicable, the formulas for αij , βij , and
Δ(Case 4)

ij are obtained from (16) and (17) by replacing u(Rj) with ũ(Dj), the appro-
priate decimation of u(Dj), so that Dj is mapped onto Ri.

As emphasized in [2], this is a very simple model. Very briefly, the use of square, nonover-
lapping blocks of the same size is an effort to standardize the method at a given scale. One
may wish, or even need, to examine self-similarity statistics at various scales. And regarding
the use of affine greyscale maps: Such a family is simple in form yet sufficiently flexible.

From the viewpoint of computer vision, our model is a low-level one since it is based on
block similarities and not on patterns or context. We also mention that particular applications
may dictate the use of specific cases. For example, it may be permissible (and, as we show,
quite effective) to employ affine greyscale maps for the purpose of denoising natural images,
e.g., faces or woodland. But in medical imaging applications, only translational symmetry
may be permitted. For example, regions of diseased tissue (represented by whiter pixels in
a PET image and darker pixels in an MRI image) will be compared only to other regions of
diseased tissue.

In [2] we examined the distributions of approximation errors Δij for a variety of test images
for the purpose of characterizing their overall degrees of self-similarity. In general, as we show
below, the Δ-distributions associated with affine greyscale transformations—Cases 3 and 4—
demonstrate some degree of peaking. A more concentrated peaking near zero error suggests a
greater degree of self-similarity. A very simple, yet important “benchmark” self-similar image
is the constant image u = C. Here, the Δ-distributions for Cases 1–4 are identical: a single
peak at Δ = 0.

The effects of (additive, Gaussian, zero-mean, independent) noise were also investigated in
[2]. The Δ-distributions of noisy images are shifted outward from their noiseless counterparts—
the greater the variance of the noise, the greater the shift. We shall discuss this feature below,
with particular reference to NL-means denoising.

The fact that the Case 3 and Case 4 Δ-error distributions of images generally demonstrate
significant peaking near zero error indicates that subblocks of an image are generally well
approximated by many other subblocks. This affine self-similarity property can be exploited
for image processing purposes, for example, denoising, as we show below.

3.1. Cases 1–3: Same-scale self-similarity. In these three cases, the domain and range
blocks have the same size. For a given domain/range pairing (Dj , Ri), the approximation
errors of (13) are related as

(18) 0 ≤ Δ(Case 3)
ij ≤ Δ(Case 2)

ij ≤ Δ(Case 1)
ij ,

since we optimize over more parameters in moving from Case 1 (no parameters) to Case 2
(one parameter) to Case 3 (two parameters).

In all numerical results reported below, the domain and range blocks were taken from
the same set of nonoverlapping 8 × 8-pixel blocks of the images examined, i.e., Di = Ri.
(Very similar results are obtained if we consider all possible 8 × 8-pixel blocks obtained from
single-pixel shifts.)
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First we examine the strict translational similarity of some test images, i.e., Case 1. In
Figure 1 are plotted histogram distributions of the approximation errors Δ(Case 1)

ij , which are
simply the L2 distances between subblocks u(Rj) and u(Ri), for the 512×512-pixel normalized
test images Lena and Mandrill. At first glance, it would appear that the two images are quite
translationally self-similar since both distributions peak in the interval [0.1, 0.2], that of the
Mandrill image being more pronounced.

(a) Case 1: Lena (b) Case 1: Mandrill

Figure 1. Case 1 error distributions Δ
(Case 1)
ij = ‖u(Rj) − u(Ri)‖, i �= j, for 512 × 512-pixel normalized

Lena and Mandrill images, over the interval Δ ∈ [0, 1]. 8 × 8-pixel blocks Ri.

(a) Cases 1, 2 and 3: Lena (b) Cases 1, 2 and 3: Mandrill

Figure 2. Same-scale RMS self-similarity error distributions—Cases 1, 2, and 3—for normalized Lena and
Mandrill images, over the interval Δ ∈ [0, 0.5]. Case 1 distributions from Figure 1 are shaded. In all cases,
8 × 8-pixel blocks Ri were used.

In Figure 2 are presented the Δ-error distributions for Lena and Mandrill for all three
cases. The reduction in approximation errors as one moves from Case 1 (shaded) to Cases 2
and 3 is clearly demonstrated, with the latter two distributions exhibiting greater peaking near
zero. We observe that enormous improvements are achieved for the Lena image in going even
from Case 1 to Case 2, where only the greyscale shift parameter β is employed. (Note that the
distributions are plotted over the subinterval [0, 0.5].) From these plots, we would conclude
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Figure 3. Distributions of σ(u(Ri)) of 8 × 8-pixel blocks for normalized Lena and Mandrill images, over
the interval [0, 0.5]. Note the similarity to Case 3 distributions of Figure 2.

that the two images are more affinely self-similar than they are translationally self-similar, in
particular for the Lena image.

In Figure 3 are plotted the histogram distributions of the standard deviations σ(u(Ri))
of the 8× 8 range blocks for the Lena and Mandrill images. There is a noteworthy similarity
between these distributions and the Case 3 distributions of Figure 1 which can be explained
as follows. The standard deviation of an image block σ(u(Ri)) is the RMS error (RMSE)
in approximating u(Ri) by its mean value, ū(Ri). This is equivalent to setting the greyscale
parameter α = 0 and optimizing over β in (13). Removing the condition α = 0 will generally
produce better approximations, implying that

(19) 0 ≤ Δ(Case 3)
ij ≤ σ(u(Ri)).

As such, the Case 3 Δ-error distributions will be shifted perturbations of the block variance
distributions. That being said, we observe that the distributions of α greyscale coefficients
generally exhibit a significant peaking at zero, as shown in Figure 4. As such, the perturbations
from the σ(u(Ri)) distributions to the Case 3 Δ-error distributions will be small.

These observations explain the difference in Case 2 and Case 3 Δ-error distributions
between the Lena and Mandrill images. Figure 3 shows that the Lena image contains a sig-
nificantly higher proportion of “flatter” image subblocks, i.e., blocks of low variance, than the
Mandrill image. From (19), the Case 2 Δ-error distribution for Lena will be more concentrated
near zero. Further improvement is expected with Case 3; cf. (18).

Of course, the above discussion suggests that the distribution of block variances is the
most important factor in determining the degree of self-similarity of an image I, i.e., how well
its subblocks may be approximated by other subblocks. The degree of affine approximability
of an image is essentially determined by its degree of flatness. Once again, a benchmark
example is the constant image u = C.

In [2], we examined the Δij distributions for a number of test images. Some results are
presented in Table 1: The entries have been arranged in a kind of “decreasing self-similarity”
based upon increasing mean and, to some extent, increasing width. Estimates of the (nat-
ural logarithm) entropies of these distributions have also been presented in Table 1 (third
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Figure 4. Distributions of Case 3, same-scale, α greyscale coefficients for normalized Lena and Mandrill
images.

Table 1
Columns 1–3: Means, standard deviations, and entropies of collage error distributions for some standard

test images. Columns 4 and 5: Means and standard deviations of σ-distributions of these images, to show their
agreement with columns 1 and 2, respectively. Reprinted from [S. K. Alexander, E. R. Vrscay, and S. Tsurumi,
A simple, general model for the affine self-similarity of images, in International Conference on Image Analysis
and Recognition (ICIAR 2008), Lecture Notes in Comput. Sci. 5112, Springer-Verlag, Berlin, Heidelberg, 2008,
pp. 192–203 (Table 1, p. 202)]. Copyright c© 2008 Springer-Verlag. Reprinted with kind permission of Springer
Science+Business Media. All rights reserved.

Image Collage errors Range block stddevs

mean stddev entropy mean stddev

Lena 0.043 0.044 2.26 0.046 0.046
San Francisco 0.046 0.057 2.01 0.048 0.059
Peppers 0.047 0.050 2.32 0.049 0.052
Goldhill 0.049 0.034 2.46 0.052 0.036
Boat 0.052 0.052 2.58 0.055 0.055
Barbara 0.060 0.049 2.69 0.064 0.051
Mandrill 0.089 0.048 2.85 0.089 0.048
Zelda 0.126 0.055 3.09 0.141 0.054

column)—note that with the exception of San Francisco, they increase as we proceed down
the table. The Lena and Mandrill images can be viewed as lying roughly on opposite sides of
a spectrum of distributions that vary in their mean values and variances.

In the final two columns of this table we present the estimates of the means and standard
deviations of the distributions of standard deviations for these images (cf. Figure 3) to show
their excellent agreement with those of the collage error distributions.

3.2. The effects of noise on Δ-error distributions. The presence of noise in an image
will generally decrease the ability of its subblocks to be approximated by other subblocks.
As such, we expect that the Δ-error distributions will be shifted away from zero error and
possibly broadened as well. This was observed in [2] and will be discussed only briefly here.

In Figure 5 are shown the Δ-error distributions for the normalized Lena image for added
Gaussian zero-mean noise N (0, σ2) with several variances (right column). In the left column
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(a) Case 1: Pure noise (b) Case 1: Lena + noise

(c) Case 2: Pure noise (d) Case 2: Lena + noise

(e) Case 3: Pure noise (f) Case 3: Lena + noise

Figure 5. Δ-error distributions for constant image u = 0.5 (left) and normalized Lena image (right) plus
independent Gaussian noise N (0, σ2), Cases 1–3. For σ = 0, the Δ-distributions of the image u = 0.5 consist
of a single peak at Δ = 0.

are shown the Δ-error distributions for the “pure noise” images u = 0.5 + N (0, σ2) for com-
parison. (In these cases, the Δ-distributions of the noiseless u = 0.5 images consist of a single
peak at Δ = 0.) In all cases, the peaks of the distributions move outward with increasing σ.
Moreover, the peaks for the noisy Lena roughly coincide with the peaks of their pure noise
counterparts. For Case 3, it can be shown [2] that the Δ-distributions for pure noise images
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peak at the standard deviation σ.
Finally we mention that for sufficiently low σ, i.e., σ = 0.1, the Δ-distributions of the pure

noise images are sharper (and therefore higher) than those of the noisy Lena images.

3.3. Same-scale self-similarity and measure-valued image functions. The Δ-error dis-
tributions associated with an image function u give some idea of the overall self-similarity
of an image. However, it may be useful to characterize the degree of self-similarity of the
image at particular points or regions. Here we show how the space of measure-valued image
functions (Y, dY ) introduced in section 2 can be useful for this purpose.

In what follows, we again assume that the image function u is an n1 ×n2-pixel array with
greyscale range Rg = [0, 1]. We also assume that the range and domain blocks come from a
common pool R. We now consider all possible range/domain block pairs (Ri, Rj), along with
the isometric affine transformations w

(k)
ij , 1 ≤ k ≤ 8, that map Rj to Ri. For simplicity of

notation, we omit the k index. (In most of the examples presented in this section, we employ
only translations, i.e., k = 1.)

For a given same-scale scheme, i.e., Case q, where q ∈ {1, 2, 3}, we first compute all
possible appropriate approximation errors Δ(Case q)

ij (cf. (13)) and let φ
(Case q)
ij (t) denote the

greyscale maps associated with these errors. (Recall that the greyscale maps assume different
forms in the three cases.) For each range/domain pairing (Ri, Rj), we then assign a weighting
function pij which is normalized as follows:

(20)
NR∑
j=1

pij = 1, 1 ≤ i ≤ NR.

An obvious question is the choice of the weighting parameters pij. It would seem natural
to employ higher weights for those domain blocks Dj that yield lower approximation errors
Δij. Here we consider a weighting scheme that is similar in form to the one used in [7] for
NL-means denoising:

(21) pij =
1
Zi

exp

(
−ΔP

ij

hP

)
,

where P > 0, h > 0, and Zi =
∑

j exp(−ΔP
ij/h

P ) is the normalization factor. In practice, P
is either 1 or 2. As for the adjustable parameter h, note the following:

1. In the limit h → 0, the pij(s) with the smallest error Δij will be selected.
2. In the limit h → ∞, all pij become equal—in other words, all parent/domain pairings

are employed equally.
For a given Case q and a set of prescribed weights {pij} we may define an operator

T (Case q), the action of which on an image function u(x) is given by

(22) v(x) = (T (Case q)u)(x) =
NR∑
j=1

pijφ
(Case q)
ij (u(w−1

ij (x))), x ∈ Ri.

In other words, the value v(x) at an x ∈ Ri is replaced by a weighted sum of modified pixel
values—we shall refer to these values as the preimages of the value v(x)—from all other blocks
Rj.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MEASURE-VALUED IMAGES, FRACTAL TRANSFORMS, IMAGE SELF-SIMILARITY 481

We state the following trivial result without proof.
Lemma 3.1.

(23) T (Case q) : L2(X) → L2(X), q ∈ {1, 2, 3}.

A number of other properties of T can be established (e.g., Lipschitz, hence continuous),
but they are not important to the discussion at hand.

The following result establishes that the distance ‖T (Case q)u − u‖ reflects the total Case
q self-similarity, or lack thereof, of the image.

Lemma 3.2.

(24) ‖T (Case q)u − u‖ ≤
NR∑
i,j

pijΔ
(Case q)
ij .

Proof. For notational convenience, we omit the superscript “(Case q).” In what follows,
we also let ‖u‖Ri denote the quantity ‖u|Ri‖, i.e., the norm of the restriction of u on the set
Ri. Because the blocks Ri are nonoverlapping, it follows that

(25) ‖Tu − u‖ =
∑

i

‖Tu − u‖Ri .

Then

‖Tu − u‖Ri =

∥∥∥∥∥∥
∑

j

pijφij ◦ u ◦ w−1
ij − u

∥∥∥∥∥∥
Ri

=

∥∥∥∥∥∥
∑

j

pij(φij ◦ u ◦ w−1
ij − u)

∥∥∥∥∥∥
Ri

≤
∑

j

pij‖φij ◦ u ◦ w−1
ij − u‖Ri

=
∑

j

pijΔij.(26)

From (25), the desired result follows.
For the special “benchmark” self-similar image, u = C, for which Δij = 0 for all i, j, we

note that ‖Tu− u‖ = 0. In other words, u is a fixed point of the operator T for Cases 1–3. It
would be interesting to investigate the distances ‖Tu−u‖ for various images, various weighting
schemes (i.e., h = 0, h = ∞), and also in the presence of noise, but such an investigation is
beyond the scope of this paper.

The T operators introduced above essentially “collapse” all preimages of an image function
value u(x) onto a single value. It may be interesting to examine the range of values that are
assumed by these preimages. It is here that the idea of a measure-valued image function will
be useful.
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For this purpose, we associate with the image function u(x) a corresponding measure-
valued image function μ(x) ∈ (Y, dY ) (cf. section 2) as follows:

(27) μ(x) = δu(x), x ∈ X.

Here, δt denotes a unit point mass measure at t ∈ Rg. We now define a measure-valued image
ν = Mμ ∈ Y as follows: For any measurable set S ⊂ Rg = [0, 1] and any x ∈ Ri, we define

ν(x)(Case q)(S) = (M (Case q)μ)(x)(S)

=
∑
j=1

pijμ(w−1
ij (x))(φ−1

ij
(Case q)(S)), q ∈ {1, 2, 3}.(28)

The measure ν(Case q), q ∈ {1, 2, 3}, is designed to reflect the Case q self-similarity of the
image function u: Given a range block Ri ⊂ X, then at each point x ∈ Ri, we keep track of
all greyscale values of the image function that are mapped to x by a domain/range mapping
wij and modified by the corresponding Case q greyscale map φij(t). These values are then
weighted and “assembled” to define the probability measure ν at x, i.e., ν(x).

In Figure 6, we show all contributions to (essentially support of) the measures ν(x)(Case q),
q = 1, 2, 3, for the row of pixels u(256, j), j = 1, . . . , 256, in the Lena image. These are the
pixels that join the midpoint of the left edge of the image to the center of the image; cf. Figure
12. Their values are plotted in Figure 4(a). The range blocks were nonoverlapping 8× 8-pixel
blocks. Only range blocks from the top left quarter of the image were used in the fitting. Note
that no weighting has been employed here.

In Case 1, for which the greyscale map φ(t) is the identity mapping, the corresponding
pixel values from all blocks contribute to each pixel value on the line—no actual fitting of
domain block pixels to corresponding range block pixels is accomplished by the greyscale
maps. The periodicity of the pattern arises from the 8-pixel size of the range blocks.

In Case 2, some fitting of domain block to range block pixels is accomplished by the
greyscale shift map. As a result, the domain greyscale values have been moved somewhat
toward the range greyscale values u(256, j).

In Case 3, a much greater degree of fitting of domain block to range block pixels is
accomplished by the affine greyscale map. As a result, even further shrinkage of domain
greyscale values toward the range greyscale values u(256, j) is accomplished.

In Figure 7 are shown pictorial representations of the measures ν(x)(Case q), q = 1, 2, 3.
For each Case q, we have used three values of the weight parameter h in (21), along with
P = 2. In these figures, darker regions have higher associated measures. As expected from
the previous figure, the measures become more concentrated about the actual greyscale values
u(256, j), 1 ≤ j ≤ 256, of the Lena image as we move from Case 1 to Case 3. In all three
cases, the weight parameter value h = 0.01 effectively concentrates the measures close to the
Lena image values, even for the Case 1 measure. However, as h is increased to 0.1, the Case
1 measure becomes quite diffuse and, at h = 1.0, quite unrelated to the Lena image values.
For Cases 2 and 3, there is virtually no change between h = 0.1 and h = 1.0 and even h = ∞
(equal probabilities, not shown in the figure).
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(a) Lena (normalized) greyscale
values u(256, j), 1 ≤ j ≤ 256

(b) Case 1 (c) Case 2 (d) Case 3

Figure 6. (a) Greyscale values of the normalized Lena image for the row of pixels u(256, j), j = 1, . . . , 256.
(b)–(d) Pictorial representations of the contributions to the measures ν(x)(Case q), q = 1, 2, 3, respectively, for
this row of pixels. The measures are arranged in vertical columns and occupy 256 bins that range in value from
0 (bottom) to 1 (top). In each case, the leftmost measure corresponds to j = 1, and the rightmost to j = 256.

3.4. Effects of noise on measures and a simple denoising method. In the first column
of Figure 8 are shown pictorial representations of the measures ν(Case q) associated with the
pixels u(256, j), 1 ≤ j ≤ 256, of the normalized Lena image with added noise N (0, σ2), where
σ = 0.1. These pictures should be compared to their noiseless counterparts in the middle
column of Figure 7. As expected, the measures for the noisy case are more diffuse, although
the Case 3 measure appears to be as concentrated for the noisy case as for the noiseless one.

A natural question is whether the means x̄ of these measures estimate the greyscale values
of the noiseless Lena image. In the middle column of Figure 8 are plotted the mean values
of these measures for the three cases q = 1, 2, 3. The RMSE with respect to the noiseless
(normalized) image values u(256, j), 1 ≤ j ≤ 256, is given for each case. As expected, the
approximations are poorest in regions of high variance/oscillation, for example, 130 ≤ x ≤ 200.

In the right column of Figure 8 are plotted the variances σ(x) of the corresponding
ν(x)(Case q) measures. In accordance with the plots of the first column, there is a dramatic
reduction in variance as we move from Case 2 to Case 3.
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(a) Case 1, h = 0.01 (b) Case 1, h = 0.1 (c) Case 1, h = 1.0

(d) Case 2, h = 0.01 (e) Case 2, h = 0.1 (f) Case 2, h = 1.0

(g) Case 3, h = 0.01 (h) Case 3, h = 0.1 (i) Case 3, h = 1.0

Figure 7. Pictorial representations of measures ν(x)(Case q), q = 1, 2, 3, for the u(256, j), 1 ≤ j ≤ 256,
row of pixels for the Lena image. Three values of the weighting parameter h in (21) have been used, with P = 2.

Note that, regardless of the comparatively high diffusivity of the Case 1 and Case 2
measures, the accuracy of their means—in terms of RMSE—is virtually identical to that of
Case 3. In essence, all three same-scale similarity methods—Cases 1, 2, and 3—appear to
perform denoising almost equally well in this example. This is generally true for the case of
coarser approximations. The three methods perform differently when both the value of h and
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(a) ν(x)(Case 1) (b) x̄, RMSE = 0.107 (c) σ(x)

(d) ν(x)(Case 2) (e) x̄, RMSE = 0.093 (f) σ(x)

(g) ν(x)(Case 3) (h) x̄, RMSE = 0.095 (i) σ(x)

Figure 8. Left column: Measures ν(x)(Case q) for the normalized Lena image with added Gaussian noise
with σ = 0.1. In all cases, h = 0.1. Vertical axis is [0, 1]. Middle column: Mean values x̄ of the ν(x)(Case q)

measures. Vertical axis [0, 1]. These results represent denoised values of the noisy Lena image and should be
compared to the noiseless image values in Figure 6(a). Right column: Variances σ(x) of the corresponding
ν(x)(Case q) measures. Vertical axis [0, 0.15].

the range block size are decreased to produce finer approximations. For example, Figure 9
shows the mean value plots that result from h = 0.05 and 4 × 4-pixel range blocks. In this
case, there is an improvement in accuracy as we move from Case 1 to Case 3.
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(a) Case 1, RMSE = 0.077 (b) Case 2, RMSE 0.067 (c) Case 3, RMSE 0.062

Figure 9. Mean values x̄ of the ν(x)(Case q) measures obtained from the noisy Lena image, with parameter
h = 0.05.

The above analysis, however, involves only a single (half) row of pixels in the Lena image.
When we examine the results of Case 1–3 denoising on a larger portion of the image, as shown
in Figure 10 (upper left quarter of the Lena image), the differences between the methods, at
least in terms of RMSE values, are more pronounced.

That being said, these few results are not meant to be interpreted as a complete analysis
of this approximation problem. A more detailed investigation, which is beyond the scope of
this paper, is clearly needed.

In the next section, we explain the effectiveness of this very simple method of denoising
and relate it to the recently developed “nonlocal means” denoising method [7].

3.5. “Nonlocal-means denoising” as a translational self-similarity method. A standard
technique for the reduction of additive white noise is to average over multiple samples. This
is the basis of the very effective “nonlocal-means denoising algorithm” [7], where the multiple
samples are provided by the image itself. Very briefly, each pixel u(i) of a noisy image is
replaced by a convex combination of other pixel values u(j) from the image. The weights λij

of this averaging procedure depend upon the similarity between neighborhoods Ni and Nj

centered about pixels i and j, respectively. Neighborhoods Nk that do not approximate Ni

very well, i.e., with high L2 error ‖Ni −Nk‖, are assigned low weights. Moreover, the weights
λij have roughly the same form as those used in (21), with P = 2.

The NL-means method may be viewed as a variation of the same-scale self-similarity
operator T (Case 1) of (22) and therefore the block-based measure-based denoising method
described in the previous section. In either procedure, an appropriately defined measure
ν(x) acts as an intermediate step. Because it operates on individual pixels (based on Case
1 similarity between neighborhoods), the NL-means method will yield better results, but of
course at greater computational expense.

It is remarkable that the NL-means method, which relies on the translational (Case 1)
self-similarity of an image, works so well. Because of the translational symmetry requirement,
only a few blocks will generally contribute significantly to the denoising of a given pixel.
Nevertheless, as we have shown in the previous section, some improvement is possible with
the simple inclusion of greyscale shifts (Case 2), which require minimal effort to compute.
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(a) Noisy Lena RMSE = 0.1 (b) Case 1, RMSE = 0.069

(c) Case 2, RMSE = 0.054 (d) Case 3, RMSE = 0.040

Figure 10. Results of Case 1–3 denoising of upper quarter of Lena image.

3.6. Case 4: Two-scale self-similarity and fractal image coding. The Δ-error distribu-
tions for Case 4, cross-scale self-similarity matching are generally quite similar to their Case
3, same-scale counterparts. In Figure 11(a) are presented histogram plots of the approxima-
tion errors Δij for the Lena and Mandrill test images, once again for range block partitions
R formed by the set of all 8 × 8 nonoverlapping pixel blocks of the images (642 = 4096 in
total). For each image, the domain pool D was formed from the set of 322 = 1024 16 × 16
nonoverlapping pixel blocks. In addition, for each range/domain block pairing Rj/Di, we
considered all eight square-to-square contractions, for a total of 33,554,432 collage errors.
The histogram distributions are very similar to the Case 3 same-scale Δ-error distributions
presented in Figure 2.

The highly peaked nature of the Case 4 Δ-error distributions for many images indicates
that range blocks Ri of an image are generally well approximated by a significant number of
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(a) Case 4: Lena (b) Case 4: Mandrill

Figure 11. Histogram distributions of two-scale collage errors Δijk for all 16×16 to 8×8 pixel domain/range
block pairings (and 8 square-to-square contractions) for Lena and Mandrill images.

larger domain blocks Dj from the image. It is often the case that there are several “near-
optimal” domain blocks, i.e., blocks for which the collage error is very close to the minimum
value achieved by the optimal domain block. We shall discuss the exploitation of this feature
in the next section.

The effect of additive, zero-mean Gaussian noise N (0, σ2) on Case 4, cross-scale Δ-error
distributions is the same as for the Case 3, same-scale case: As the variance σ2 is increased, the
Δ-error distributions are pushed away from the zero-error axis. Moreover, these distributions
will peak at σ. Because of the marked similarity between these two cases, we omit the
presentation of graphical evidence—it is sufficient to consult the bottom row of Figure 5.

Case 4, cross-scale self-similarity forms the basis of fractal image coding [6, 12, 24]. Given
a “target” image u, each image subblock u(Ri) is approximated by a geometrically contracted
and affine greyscale-modified copy of a larger subblock u(Dj). In traditional fractal coding,
the range/domain assignments (i, j(i)) and associated greyscale parameters (αi, βi) define a
fractal transform operator T . We may write (11) as follows:

(29) u(x) ≈ (Tu)(x) = αiu(w−1
i,j(i)(x)) + βi, x ∈ Ri, 1 ≤ i ≤ NR.

Under appropriate conditions [14] involving the αi and the contraction factors of the spatial
maps wi,j(i), T is contractive in L2(X). From Banach’s fixed point theorem, this implies the
existence of a unique fixed point function ū = T ū. Furthermore, ū may be generated by
iteration: Starting with any seed image u0, let un+1 = Tun. Then un → ū as n → ∞. (In the
discrete case, convergence is achieved after a finite number of iterations.) Unless all greyscale
parameters βi are zero, which is never the case in practice, the fixed point ū is nonzero. And
from (29), ū is an approximation to the target image u, to be discussed in more detail below.

The fractal transform operator T in (29) is a nonlocal operator since blocks of an image
function are replaced by modified copies of blocks from elsewhere in the image. The fixed
point ū of T is affinely self-similar since the approximation in (29) becomes an equality:

(30) ū(x) = (T ū)(x) = αiū(w−1
i,j(i)(x)) + βi, x ∈ Ri, 1 ≤ i ≤ NR.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MEASURE-VALUED IMAGES, FRACTAL TRANSFORMS, IMAGE SELF-SIMILARITY 489

The mathematical basis for fractal-based approximation is provided by the so-called collage
theorem [5], which is a simple consequence of Banach’s theorem:

(31) ‖u − ū‖ ≤ 1
1 − cT

‖Tu − u‖,

where cT is the contraction factor of T . Given a set of range blocks R and a domain pool D,
one tries to to make the approximation error ‖u − ū‖ as small as possible by minimizing the
collage error ‖u − Tu‖. From (29) this is generally done as follows: For each range block Ri,
we search the domain pool D for the block Dj(i) that yields the lowest approximation error
Δij in (13). (In most applications, the range of the αij greyscale parameters is restricted to
[−αmax, αmax], where αmax is typically 1 in value, in order to guarantee contractivity of T .
Such a “clamping” procedure has been employed in the calculations reported in this paper.)

Of course, if the size of the domain pool D is increased, it may be possible to decrease
the collage error. However, an increase in the size of D implies a greater computational cost
because of the searching involved. This is a well-known problem in fractal coding [12, 6, 24].
The procedure outlined above, referred to as collage coding in the fractal coding literature,
was first proposed by Jacquin [20] and forms the basis of most, if not all, block-based fractal
coding procedures.

In Figure 12 (lower left) is shown the fixed point approximation ū to the standard 512×512-
pixel Lena image (8 bits/pixel) obtained from collage coding, once again using a partition R of
8× 8 nonoverlapping pixel blocks and a domain pool D of 322 = 1024 16× 16 nonoverlapping
pixel blocks. (This choice of domain pool is clearly not optimal.) This image was obtained
by starting with the seed image u0(x) = 255 (plain white image) and iterating un+1 = Tun

to n = 15. Iterates u1, u2, and u3 are also shown in this figure.

3.7. Multiparent block fractal coding. Historically, most fractal image coding research
focused on its compression capabilities—obtaining acceptable accuracy with the smallest pos-
sible domain pool in order to minimize (i) search times and (ii) storage of the fractal code.
The fact that range blocks Ri of an image are, in general, well approximated by a good num-
ber of domain blocks Dj does not seem to have been emphasized or exploited. Consequently,
investigations generally focused on the results yielded by optimal domain blocks of the pool
and not on the possible use of suboptimal ones.

More recently, however, the redundancy of good domain/range pairings has been exploited
[1] in order to perform image denoising. Such multiparent block fractal coding schemes can
be viewed as cross-scale analogues of the same-scale NL-means denoising scheme: The use
of several domain blocks for each range block, followed by downsampling, corresponds to
averaging over multiple samples, resulting in a reduction of noise variance.

In this section, we describe a simple multiparent block fractal coding scheme that results
from a modification of the block-based coding method outlined in the previous section. As in
the same-scale case, this multiparent scheme lends itself nicely to a measure-based formalism.

We consider the same (square) range and domain block pools, R and D, respectively, used
in the previous section. For each range block Ri, we compute the Δij approximation errors
associated with all domain blocks Dj ; cf. (13). (Recall that for each range/domain pairing
(Ri,Dj) there are eight spatial contraction/decimation maps wk

ij : Dj → Ri, 1 ≤ k ≤ 8.
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Figure 12. Starting at upper left and moving clockwise: The iterates u1, u2, and u3 along with the fixed
point ū of the fractal transform operator T designed to approximate the standard 512 × 512 (8 bits/pixel) Lena
image. The “seed” image was u0(x) = 255 (plain white). The fractal transform T was obtained by “collage
coding” using 4096 8 × 8 nonoverlapping pixel range blocks. The domain pool consisted of the set of 1024
nonoverlapping 16 × 16 pixel blocks.

Once again, for simplicity of notation, we shall omit the k index.) The optimal greyscale map
minimizing the error Δij will be denoted as

(32) φij(t) = αijt + βij .

For this pairing we also assign a weight pij, normalized so that

(33)
NR∑
j

pij = 1, 1 ≤ i ≤ NR.
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The resulting multiparent block transform operator T is then defined as

(34) (Tu)(x) =
∑

j

pijαiju(w−1
ij (x)) + βij , x ∈ Ri.

This definition represents a generalization of the fractal transform operator of (29) in the
previous section—not only one but several, perhaps all, domain blocks Dj ∈ D can contribute
to the modification of u(x) for x ∈ Ri. It may also be viewed as the Case 4, cross-scale
analogue of the operators T (Case q) defined in (22).

Once again, an obvious question is the choice of the weighting parameters pij. It would
once again seem natural to employ higher weights for those domain blocks Dj that yield lower
approximation errors Δij. Several weighting schemes were examined in [1] for the purpose of
denoising. Here, for consistency, we shall employ the same weighting scheme as for multiparent
schemes in Cases 1–3; cf. (21).

In principle, we could now proceed as in section 3.3 and define an associated operator
M (Case 4) on the space Y of measure-valued image functions. And from this result we could
construct Case 4 analogues of the results in Figure 7. However, the operator M (Case 4) will be
shown to possess an additional property, namely, contractivity in (Y, dY ). Unlike Cases 1–3,
this will also allow us to iterate M to perform denoising.

In the next section, we set up the mathematical basis for the existence and contractivity
of this fractal transform operator on (Y, dY ).

4. A fractal transform operator M on (Y, dY ). In this section, we construct and an-
alyze a fractal transform operator M on the space (Y, dY ) of measure-valued functions. For
the benefit of the inexperienced reader, the appendix contains an overview of some main re-
sults from the theory of “iterated function systems” [4, 3], which provides the basis for our
treatment.

We now list the ingredients for a fractal transform operator in the space Y . The reader
will note that they form a kind of blending of IFS-based methods on measures (IFSP; see
appendix) and functions (IFSM; see appendix). For simplicity, we assume that X = [0, 1].
The extension to [0, 1]n is straightforward. We have the following:

1. a set of N one-to-one, affine contraction maps wi : X → X, wi(x) = six+ ai, with the
condition that ∪N

i=1wi(X) = X;
2. a set of N greyscale maps φi : Rg → Rg, assumed to be Lipschitz, i.e., for each i, there

exists an αi ≥ 0 such that

(35) |φi(t1) − φi(t2)| ≤ αi|t1 − t2| ∀t1, t2 ∈ Rg;

3. for each x ∈ X, a set of probabilities pi(x), i = 1, . . . , N , with the following properties:
(a) pi(x) are measurable,
(b) pi(x) = 0 if x /∈ wi(X), and
(c)

∑N
i pi(x) = 1 for all x ∈ X.

The action of the fractal transform operator M : Y → Y defined by the above is as follows:
For a μ ∈ Y and any subset S ⊂ [0, 1],

(36) ν(x)(S) = (Mμ(x))(S) =
N∑

i=1

pi(x)μ(w−1
i (x))(φ−1

i (S)).
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Theorem 4.1. Let pi = supx∈X pi(x). Then for μ1, μ2 ∈ Y ,

(37) dY (Mμ1,Mμ2) ≤
(

n∑
i=1

|si|αipi

)
dY (μ1, μ2).

Proof. Computing, we have

dY (Mμ1,Mμ2) =
∫

X
dH(Mμ1(x),Mμ2(x))dμL

=
∫

X
dH

(
N∑

i=1

pi(x)μ1(w−1
i (x)) ◦ φ−1

i ,
N∑

i=1

pi(x)μ2(w−1
i (x)) ◦ φ−1

i

)
dμL

≤
∫

X

n∑
i=1

pi(x)dH (μ1(w−1
i (x)) ◦ φ−1

i , μ2(w−1
i (x)) ◦ φ−1

i )dμL

≤
∫

X

n∑
i=1

αipi(x)dH(μ1(w−1
i (x)), μ2(w−1

i (x)))dμL

≤
∫

X

(
n∑

i=1

|si|αipi

)
dH(μ1(x), μ2(x))dμL

=

(
n∑

i=1

|si|αipi

)
dY (μ1, μ2).

Corollary 4.2. Let pi = supx∈X pi(x). Then M is a contraction on (Y, dY ) if

(38)
n∑

i=1

|si|αipi < 1.

Consequently there exists a measure-valued mapping μ̄ ∈ Y such that μ̄ = Mμ̄.
We have the following examples.

Example 1. The fractal transform M is defined by the following two-IFS-map system
on X = [0, 1]:

w1(x) =
1
2
x, φ1(t) =

1
2
t,

w2(x) =
1
2
x +

1
2
, φ2(t) =

1
2
t +

1
2
.

The sets w1(X) and w2(X) overlap at the single point x = 1
2 , so we let

p1(x) = 1, p2(x) = 0, x ∈
[
0,

1
2

)
,

p1(x) = 0, p2(x) = 1, x ∈
(

1
2
, 1
]

,

p1

(
1
2

)
= p2

(
1
2

)
=

1
2
.
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It is easy to confirm that M is contractive. Its fixed point μ̄ is given by

(39) μ̄(x) = δ(t − x), x ∈ [0, 1],

where δ(s) denotes the “Dirac delta function” at s ∈ [0, 1].
Example 2. A “perturbation” of the fractal transform M in Example 1 is produced by
adding the following IFS and associated greyscale maps:

w3(x) =
1
2
x, φ3(t) =

1
2
t + 0.1.

The sets w1(X) and w3(X) overlap over the entire subinterval [0, 1
2 ], so we let

p1(x) = p3(x) =
1
2
, p2(x) = 0, x ∈

[
0,

1
2

)
,

p1(x) = p3(x) = 0, p2(x) = 1, x ∈
(

1
2
, 1
]

,

p1

(
1
2

)
= p2

(
1
2

)
= p3

(
1
2

)
=

1
3
.

Once again, it is easy to confirm that M is contractive. Its fixed point μ̄(x) is sketched
in Figure 13. The darkness of a point is proportional to the measure μ̄(S1, S2) of the
region in [0, 1]2 represented by the point.
Note that the overlapping of the w1 and w3 maps over [0, 1

2 ] is responsible for the
self-similar “splitting” of the measures μ̄(x) over this interval, since φ3 produces an
upward shift in the greyscale direction. Since w2(x) maps the support [0, 1] of the
entire measure-valued function onto [12 , 1], the self-similarity of the measure over [0, 1

2 ]
is carried over to [12 , 1].

4.1. Continuity of fixed point measures with respect to probabilities. In this section
we establish the stability of fixed point measures of the fractal transforms introduced above
with respect to changes in the probabilities. Consider the fixed points μ and μ∗ of

(40) (Mμ)x(S) =
N∑

i=1

pi(x)μw−1
i (x)(φ

−1
i (S)),

(41) (Mμ)x(S) =
N∑

i=1

p∗i (x)μw−1
i (x)(φ

−1
i (S)).

Theorem 4.3. Let p̃i = supx∈X pi(x) and suppose that M is a contraction. Then there
exists a constant C > 0 such that

(42) dY (μ, μ∗) ≤ C

1 −∑N
i=1 p̃iαi|si|

max
1≤i≤N

d1(pi, p
∗
i ).
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Figure 13. A sketch of the invariant measure μ̄(x) for the three-IFS-map fractal transform in Example 2,
x ∈ X = [0, 1], y ∈ Rg = [0, 1].

Proof. Computing, we have

dH(μx, μ∗
x) = dH

(
N∑

i=1

pi(x)μw−1
i (x) ◦ φ−1

i ,

N∑
i=1

p∗i (x)μ∗
w−1

i (x)
◦ φ−1

i

)

≤ dH

(
N∑

i=1

pi(x)μw−1
i (x) ◦ φ−1

i ,
N∑

i=1

pi(x)μ∗
w−1

i (x)
◦ φ−1

i

)

+ dH

(
N∑

i=1

pi(x)μ∗
w−1

i (x)
◦ φ−1

i ,

N∑
i=1

p∗i (x)μ∗
w−1

i (x)
◦ φ−1

i

)

=
N∑

i=1

pi(x)αidH(μw−1
i (x), μ

∗
w−1

i (x)
)

+ C|pi(x) − p∗i (x)|.

This implies that

(43) dY (μ, μ∗) ≤
(

N∑
i=1

p̃iαi|si|
)

dY (μ, μ∗) + C max
1≤i≤N

d1(pi, p
∗
i ),

which, upon rearrangement, yields the desired result.

4.2. Moment relations induced by the fractal transform operator. In this section we
show that the moments of measures in the space (Y, dY ) also satisfy recursion relations when
the greyscale maps φi are affine. We now consider the local or x-dependent moments of a
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measure μ(x) ∈ Y , defined as follows:

(44) gn(x) =
∫

Rg

sndμx(s), n = 0, 1, 2, . . . ,

where we use the notation μx = μ(x) in the Lebesgue integral for simplicity. By definition,
g0(x) = 1 for x ∈ X. Obviously the functions gm are measurable on X (since μ(x) are
measurable) and bounded so that gm ∈ L1(X,L). We now derive the relations between the
moments of a measure μ ∈ Y and the moments of ν = Mμ, where M is the fractal transform
operator defined in (36).

Let hn denote the moments of ν = Mμ. Computing, we have

hn(x) =
∫

Rg

snd(Mμ)x(s)

=
∫

Rg

snd

(
N∑

i=1

pi(x)μw−1
i (x) ◦ φ−1

i

)
(s)

=
∫

Rg

N∑
i=1

pi(x)snd(μw−1
i (x) ◦ φ−1

i )(s)

=
∫

Rg

N∑
i=1

pi(x)[φi(s)]nd(μw−1
i (x))(s).

For affine greyscale maps of the form φ(s) = αis + βi, we have

hn(x) =
∫

Rg

N∑
i=1

pi(x)(αi + sβi)nd(μw−1
i (x))(s)

=
N∑

i=1

n∑
j=0

pi(x)
∫

Rg

cnj(αis)jβ
n−j
i d(μw−1

i (x))(s)

=
N∑

i=1

n∑
j=0

pi(x)cnjα
j
iβ

n−j
i

∫
Rg

sjd(μw−1
i (x))(s)

=
n∑

j=0

[
N∑

i=1

pi(x)cnjα
j
iβ

m−j
i

]
gj(w−1

i (x)),(45)

where

(46) cnj =
(

n
j

)
.

The reader may compare the above result to that of (67) for the IFSP case. The place-
dependent moments hn(x) are related to the moments gn evaluated at the preimages w−1

i (x).
And it is the greyscale φ(s) maps that now “mix” the measures, as opposed to the spatial IFS
maps wi(x) in (67).
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In the special case that μ = μ̄ = Mμ̄, the fixed point of M , then hn(x) = gn(x), and we
have

(47) gn(x) =
n∑

j=0

[
N∑

i=1

pi(x)cnjα
j
iβ

n−j
i

]
gj(w−1

i (x)).

In other words, the moments gn(x) satisfy recursion relations that involve moments of all
orders up to n evaluated at preimages w−1

i (x). Note that this does not yield a rearrangement,
analogous to (69), which will permit a simple recursive computation of the moments gn(x).
Nevertheless, the moment functions can be computed recursively, as we now show.

First, note that for the particular case n = 1, the moment function g1(x) is a solution of
the fixed point equation

(48) g1(x) =
N∑

i=1

pi(x)[αig1(w−1
i (x)) + βi].

(Note that g1(x) is the expectation value of μ(x).) But this implies that g1 is the unique fixed
point in L1(X) of the contractive place-dependent IFSM operator defined by

(49) (Mu)(x) =
N∑

i=1

pi(x)[αiu(w−1
i (x)) + βi].

This provides a method for computing g1—at least approximately—by means of Banach’s
theorem. Starting at any u0 ∈ L1 the sequence Mnu = M(Mn−1)u0 converges to g1 as
n → +∞.

Higher order moments can be computed in a similar recursive manner. To illustrate,
consider the case n = 2. From (47), the moment g2(x) satisfies the fixed point equation

(50) g2(x) =
N∑

i=1

pi(x)[α2
i g2(w−1

i (x)) + 2αiβig1(x) + β2
i ].

In other words, g2 is the fixed point of a contractive IFSM operator (cf. (75)), with conden-
sation function

(51) b(x) =
N∑

i=1

pi(x)[2αiβig1(x) + β2
i ].

From a knowledge of g1, the moment function g2 may be computed via iteration. The process
may now be iterated to produce g3, etc.

Finally, note that g1 and g2 determine the pointwise variance σ2(x) of the measure μ̄(x):

σ2(x) =
∫

Rg

(s − g1(s))2dμ̄x(s)

= g2(x) − [g1(x)]2.(52)
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Table 2
Optimal affine greyscale maps for each parent/child pairing Ri/Dj in the (2, 4) domain/range block IFSM

described in the text. The final column lists the probabilities defined by (21) for the parameter value h = 1.

Rj Di k α
(k)
ij β

(k)
ij p

(k)
ij

1 1 1 0.66193 −0.00497 0.30880
1 1 2 −0.65050 0.79469 0.19120
1 2 1 −0.65050 0.79469 0.19120
1 2 2 0.66193 −0.00497 0.30880
2 1 1 0.28561 0.64623 0.36206
2 1 2 −0.25802 0.97746 0.13794
2 2 1 −0.25802 0.97746 0.13794
2 2 2 0.28561 0.64623 0.36206
3 1 1 −0.25802 0.97746 0.13794
3 1 2 0.28561 0.64623 0.36206
3 2 1 0.28561 0.64623 0.36206
3 2 2 −0.25802 0.97746 0.13794
4 1 1 −0.65050 0.79469 0.19120
4 1 2 0.66193 −0.00497 0.30880
4 2 1 0.66193 −0.00497 0.30880
4 2 2 −0.65050 0.79469 0.19120

4.3. Multiparent block fractal coding and associated measure-valued image functions.
We now return to the multiparent block fractal coding scheme introduced in section 3.7.
Associated with the block transform operator T in (34) will be an operator M : Y → Y
defined as follows: For a μ ∈ Y , x ∈ Ri, and any subset S ⊂ [0, 1], we define ν = Mμ as
follows:

(53) ν(x)(S) = (Mμ(x))(S) =
∑
j=1

pijμ(w−1
ij (x))(φ−1

ij (S)).

Note that any choice of the weights pij and the affine maps φij subject to the conditions
given above will produce a contractive fractal transform operator M : Y → Y with unique
fixed point measure μ̄. However, we shall consider the weighting scheme of (21).

We illustrate with the following simple one-dimensional example: the target function

(54) u(x) = 0.8 sin(πx) + 0.1, x ∈ [0, 1].

Two domain blocks Di and four range blocks Rj will be used, i.e.,

D1 = [0, 0.5], D2 = [0.5, 1],
R1 = [0, 0.25], R2 = [0.25,−0.5], R3 = [0.5, 0.75], R4 = [0.75, 1].

We also consider both possible geometric contractions w
(k)
ij of each interval Di to a smaller

interval Rj : orientation preserving (k = 1) and orientation flipping (k = 2). The optimal
greyscale maps φ

(k)
ij that minimize the collage errors Δ(k)

ij are shown in Table 2. In the final

column of this table are listed the probabilities p
(k)
ij that are obtained from the exponential

formula in (21) using the parameter values P = 1 and h = 1. The probabilities with the
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highest value (0.36206) correspond to the best parent/child pairings that would be selected
by standard fractal coding. Because of the geometrical symmetry of the target function,
many of the probabilities and corresponding greyscale maps are equal. (For example, the
approximation of R1 by D1 with zero flip should be the same as its approximation by D2 with
a flip.)

In Figure 14 we present pictorial representations of the measure-valued fixed points μ̄(x)
for four choices of probabilities p

(k)
ij as defined by the exponential formula in (21): (i) h ≈ 0,

(ii) h = 0.1, (iii) h = 1.0, and (iv) h = 104, the latter essentially representing an infinite
value of h. The h ≈ 0 case corresponds to standard fractal coding, where only the best
parent/child pairings are chosen. In this case, for each x ∈ [0, 1], the measure is concentrated
around, or situated exclusively at, a greyscale value y ∈ [0, 1] that corresponds to the value
ū(x) of the standard fractal coding IFSM attractor. As h increases from 0, the probability
measures at each x value become more “diffuse,” starting essentially as Dirac unit masses on
the IFSM attractor function when h = 0. The value h = 104 yields equal probabilities for all
domain/range pairings to well over six decimal digits, i.e., h ≈ ∞.

We now return to the Lena image study of sections 3.3 and 3.4 and provide the correspond-
ing Case 4 results for measures and denoising. In Figure 15 are shown pictorial representations
of the Case 4 measures ν(x) = (Mν)(x) for the u(256, j), 1 ≤ j ≤ 256, row of pixels of the
Lena image. These pictures complement the Case 1–3 results of Figure 7.

In Figure 16(a) is shown the pictorial representation of the Case 4 measure for the same row
of pixels of the noisy normalized Lena image with added zero-mean Gaussian noise σ = 0.1.
In 16(b) are plotted the mean values x̄ of ν(x)(Case4). And in 16(c) is plotted the variance
σ(x) of ν(x)(Case 4). In all cases, h = 0.1. These figures should be compared with their Case
1–3 counterparts in Figure 8.

Now recall that the Case 4 cross-scale fractal image transform operator T and associated
measure-valued transform operator M may be contractive, in which case there exist respec-
tive fixed points ū and μ̄ of these operators. A natural question is whether the additional
application of these operators will result in further denoising. In Figure 17 are shown the
results of applying the Case 4 operator M to the measure ν(x) of Figure 16. On the left is
plotted the mean-value curve associated with the measure Mν = M2μ. Note that its overall
shape is almost identical to the mean-value curve of ν in Figure 16. The RMSE, however, is
actually slightly larger, indicating that no additional denoising has been accomplished. On the
right is plotted the variance of the measure Mν, which generally demonstrates lower values
from those of the measure ν. The variance of Mν also demonstrates some rather repetitive
self-similar features, which is worthy of further investigation. Additional applications of the
M operator leave the measures, and therefore the associated plots in Figure 17, unchanged to
several decimal digits of accuracy. As a result, we may consider these plots to represent the
mean values and variances of the fixed point measure ν̄(x) of M .

In earlier studies of fractal denoising, e.g., [17, 18], the first step was to compute the
fractal transform T of a noisy image ũ. The fixed point ū of T was then considered to provide
an approximation of the corresponding noiseless image u. However, it is possible to improve
this result by starting with T and perturbing it in an attempt to produce an estimate of the
fractal transform T ′ of the noiseless image u and not ũ. The fixed point ū′ of this transform
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(i) h → 0 (ii) h = 0.1

(iii) h = 1 (iv) h → ∞
Figure 14. Pictorial representations of the measure-valued fixed point images of the (2, 4) domain/range

block IFSM described in the text. The region is X × Rg = [0, 1] × [0, 1]. At each x ∈ [0, 1], the measure is

sketched vertically. Four sets of probabilities p
(k)
i , as defined by the exponential formula in (21), were used. (i)

h ≈ 0, corresponding to standard fractal coding; (ii) h = 0.1; (iii) h = 1.0, the probabilities listed in Table 1;
(iv) h = 104 (essentially infinity) yielding equal probabilities for all domain/range pairs.

generally provided a better approximation to u. In all of these methods, the focus of the
denoising procedure was to produce a fixed point approximation to the noiseless image. In
contrast, the same-scale (Cases 1–3) as well as the cross-scale, fractal-based (Case 4) denoising
methods outlined in this paper produce approximations of a noiseless image u by means of a
transformation of the noisy image ū.
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(a) Case 4, h = 0.01 (b) Case 4, h = 0.1 (c) Case 4, h = 1.0

Figure 15. Pictorial representations of measures ν(x)(Case 4) for the u(256, j), 1 ≤ j ≤ 256, row of pixels
of the Lena image. Three values of the weighting parameter h in (21) have been used, with P = 2. These
pictures complement the Case 1–3 results of Figure 7. 8 × 8-pixel range blocks, 16 × 16-pixel domain blocks.

(a) ν(x)(Case 4) (b) x̄, RMSE = 0.092 (c) σ(x)

Figure 16. (a) Pictorial representation of measure ν(x)(Case 4) for the u(256, j), 1 ≤ j ≤ 256, row of
pixels for the normalized Lena image plus Gaussian noise σ = 0.1. (b) Mean values x̄ of ν(x)(Case4). (c)
Variance σ(x) of this measure—vertical scale [0, 0.15]. In all cases, h = 0.1. These figures complement the
Case 1–3 results of Figure 8. 8 × 8-pixel range blocks, 16 × 16-pixel domain blocks.

When h is decreased to 0.05 and 4 × 4-pixel range blocks are used, the resulting mean-
value estimate of the denoised image is very similar to the Case 3 result of Figure 9, with
the same RMSE value of 0.062. As such, we shall not show the result. Instead we show, in
Figure 18, the results of applying the Case 4 method to the entire upper quarter of the Lena
image. A comparison of these results with those of Case 1–3 denoising in Figure 10 shows
that the cross-scale, Case 4 denoising procedure seems to afford no significant improvement
over same-scale, Case 3 denoising, either visually or in terms of RMSE. A more exhaustive
investigation is required, however.

5. Concluding remarks. In this paper we have constructed an appropriate complete met-
ric space (Y, dY ) of measure-valued images μ : [0, 1]n → M([0, 1]). Furthermore, we have
shown how such a formalism is applicable to NL image processing. In particular, it was shown
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(a) ν̄(Case 4)(x) (b) x̄, RMSE = 0.094 (c) σ(x)

Figure 17. (a) Pictorial representation of invariant measure Mν(x)(Case 4) = M2μ for the u(256, j),
1 ≤ j ≤ 256, row of pixels for the normalized Lena image plus Gaussian noise σ = 0.1. (b) Mean values x̄ of
ν(x)(Case4). (c) Variance σ(x) of this measure—vertical scale [0, 0.15]. In all cases, h = 0.1.

(a) ν(Case 4) = Mμ, RMSE = 0.039 (b) ν̄(Case 4), RMSE = 0.039

Figure 18. Results of Case 4 denoising of upper quarter of Lena image. Left: One application of Case 4
fractal transform operator M . Right: Fixed point of M . These figures complement those of Figure 10.

how the space (Y, dY ) can be used with a simple model of self-similarity of images that includes
both same-scale as well as cross-scale similarity.

In the same-scale case, we focused particular attention on the method of NL-means de-
noising. The measure-valued image approach may be viewed as a kind of intermediate step
which accounts for all greyscale values, as well as their weights, that contribute to the estimate
of a denoised greyscale value.

In the cross-scale case, we showed how the space (Y, dY ) may be associated with a multi-
parent method of block fractal coding. For this purpose, a method of fractal transforms
was formulated over this space. Under suitable conditions, the fractal transform operator
M : Y → Y is contractive, implying the existence of a unique fixed point measure μ̄ = T μ̄.
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The pointwise moments of this measure were also shown to satisfy a set of place-dependent
recursion relations.

Generally, images are locally self-similar to a high degree: The image supported over a
given range block Ri is generally well approximated by images supported on a good number
of domain blocks Dj after spatial contraction and greyscale modification. We have shown,
by means of a number of examples, how the measure-valued image formalism can be used to
capture such self-similarities throughout an image. We are currently exploring in more detail
the role of the variance function σ(x) in characterizing self-similarity. As well, we are exploring
the use of the measure-valued image formalism in other NL image processing algorithms such
as zooming.

6. Appendix. Essentials of iterated function systems.

6.1. Basic results involving contractive maps. For the benefit of the reader, we men-
tion some important results for contractive maps. They provide the basis for fractal-based
approximation methods.

Theorem 6.1 (Banach). Let (X, d) be a complete metric space. Also let T : X → X be a
contraction mapping with contraction factor c ∈ [0, 1); i.e., for all x, y ∈ X, d(Tx, Ty) ≤
cd(x, y). Then there exists a unique x̄ ∈ X such that x̄ = T x̄. Moreover, for any x ∈ X,
d(T nx, x̄) → 0 as n → ∞.

A simple triangle inequality along with Banach’s theorem yields the following result.
Theorem 6.2 (see “collage theorem” [5, 3]). Let (X, d) be a complete metric space and let

T : X → X be a contraction mapping with contraction factor c ∈ [0, 1). Then for any x ∈ X,

(55) d(x, x̄) ≤ 1
1 − c

d(x, Tx),

where x̄ is the fixed point of T .
Another manipulation of the triangle inequality involving x, Tx, and x̄ yields the following

interesting result.
Theorem 6.3 (“anti-collage theorem” [25]). Assume the conditions of the collage theorem

above. Then for any x ∈ Y ,

(56) d(x, x̄) ≥ 1
1 + c

d(x, Tx).

Theorem 6.4 (“continuity of fixed points” [8]). Let (Y, dY ) be a complete metric space and
T1, T2 be two contractive mappings with contraction factors c1 and c2 and fixed points y∗1 and
y∗2, respectively. Then

(57) dY (y∗1, y
∗
2) ≤

1
1 − c

dY,sup(T1, T2),

where

(58) dY,sup(T1, T2) = sup
x∈X

d(T1(x), T2(y))

and c = min{c1, c2}.
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6.2. Iterated function systems and invariant measures. In what follows, (X, d) denotes
a compact metric “base space,” typically [0, 1]n. Let w = {w1, . . . , wN} be a set of 1-1
contraction maps wi : X → X, to be referred to as an N -map IFS. Let ci ∈ [0, 1) denote the
contraction factors of the wi and define c = max1≤i≤N ci. Note that c ∈ [0, 1).

Now let H(X) denote the set of nonempty compact subsets of X and h denote the Haus-
dorff metric. Then (H, h) is a complete metric space [11]. Associated with the IFS maps wi

is a set-valued mapping ŵ : H(X) → H(X), the action of which is defined to be

(59) ŵ(S) =
N⋃

i=1

wi(S), S ∈ H(X),

where wi(S) := {wi(x), x ∈ S} is the image of S under wi, i = 1, 2, . . . , N .
Theorem 6.5 (see [19]). ŵ is a contraction mapping on (H(X), h):

(60) h(w(A),w(B)) ≤ ch(A,B), A,B ∈ H(X).

Corollary 6.6. There exists a unique set A ∈ H(X) such that w(A) = A, the so-called
attractor of the IFS w. Moreover, for any S ∈ H(X), h(wn(S), A) → 0 as n → ∞.

Now let M(X) denote the set of Borel probability measures on X and dH denote the
Monge–Kantorovich metric on this set:

(61) dH(μ, ν) = sup
f∈Lip1(X,R)

[∫
X

f(x)dμ −
∫

X
f(x)dν

]
,

where

(62) Lip1(X, R) = {f : X → R | |f(x1) − f(x2)| ≤ d(x1, x2) ∀x1, x2 ∈ X}.

For i ≤ i ≤ N , let 0 < pi < 1 be a partition of unity associated with the IFS maps wi

so that
∑N

i=1 pi = 1. Associated with this IFSP (w,p) is the so-called Markov operator,
M : M(X) → M(X), the action of which is

(63) ν(S) = (Mμ)(S) =
N∑

i=1

piμ(w−1
i (S)) ∀S ∈ H(X).

(Here, w−1
i (S) = {y ∈ X | wi(y) ∈ S}.)

Theorem 6.7 (see [19]). M is a contraction mapping on (M(X), dH ):

(64) dH(Mμ,Mν) ≤ cdH(μ, ν), μ, ν ∈ M(X).

Corollary 6.8. There exists a unique measure μ̄ ∈ M(X), the so-called invariant measure
of the IFSP (w,p), such that μ̄ = Mμ̄. Moreover, for any μ ∈ M(X), dH(Mnμ, μ̄) → 0 as
n → ∞.

The reader is referred to the book by Barnsley [3] for more detailed discussions as well as
numerous examples.
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6.3. Moment relations for measures and IFSP. In applications, it is most convenient to
employ affine IFS maps. In this case, the moments of the invariant measure μ̄ of the Markov
operator M satisfy a set of relations that allow them to be computed recursively [4, 3, 13]. We
illustrate with the one-dimensional case, i.e., X = [0, 1]. The extension to higher dimensions
is quite straightforward.

The affine IFS maps will be denoted as

(65) wi(x) = six + ai, i = 1, 2, . . . , N.

The moments of a probability measure μ ∈ M(X) are defined as

(66) gn =
∫

X
xndμ, n = 0, 1, 2, . . . .

By definition, g0 = 1. Now let ν = Mμ. Then, from (63), the moments of ν are given by

hn =
∫

X
xnd(Mμ)(x)

=
∫

X
xnd

(
N∑

i=1

piμ ◦ w−1
i

)
(x)

=
∫

X

N∑
i=1

pix
nd(μ ◦ w−1

i )(x)

=
∫

X

N∑
i=1

pi[wi(x)]ndμ(x)

=
∫

X

N∑
i=1

pi[six + ai]ndμ(x).

Expansion of the binomial followed by an interchange of summation and integration yields
the result

(67) hn =
n∑

j=0

(
n
j

)[ N∑
i=1

pis
j
ia

n−j
i

]
gj .

If we let

(68) g = (g0, g1, . . .)T , h = (h0, h1, . . .)T

denote the (infinite) moment vectors of μ and ν, respectively, then the Markov operator M is
seen to induce a linear mapping h = Ag, where A is represented by a lower triangular matrix.
This was originally pointed out in [13].

In the special case that μ = μ̄ = Mμ̄, the invariant measure of the IFSP, then hn = gn

and (67) can be rearranged to yield

(69)

(
1 −

N∑
i=1

pis
n
i

)
gn =

n−1∑
j=0

(
n
j

)[ N∑
i=1

pis
j
ia

n−j
i

]
gj .
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This result, originally derived in [4], shows that the moments gn of the invariant measure μ̄
may be computed recursively, starting with g0 = 1.

6.4. IFS on function spaces. For the moment, we consider a general function space F(X)
supported on X. The essential components of a fractal transform operator are as follows:

1. a set of N one-to-one contraction maps wi : X → X with the condition that ∪N
i=1wi(X)

= X;
2. a set of associated greyscale maps φi : R → R that are assumed to be Lipschitz on R;

i.e., for each φi there exists a Ki ≥ 0 such that

(70) |φi(t1) − φi(t2)| ≤ Ki|t1 − t2| ∀ t1, t2 ∈ R.

The above two sets of maps are said to comprise an “iterated function system with greyscale
maps” (IFSM) (w, Φ) [14]. For each x ∈ X, this IFSM produces one or more fractal compo-
nents defined as

(71) gi(x) =
{

φi(u(w−1
i (x))) if x ∈ wi(X),

0 otherwise.

If several fractal components exist for an x ∈ X, then they are combined with an operation
that is suitable for the space in which we are working (see [14] for more details and examples
of the various function spaces that can be considered). The natural operation in Lp(X) is the
summation operation: For u ∈ Lp(X),

(72) v(x) = (Tu)(x) =
N∑

i=1

gi(x).

Theorem 6.9. Let (w,Φ) be an IFSM, with spatial contractions wi and Lipschitz greyscale
maps φi. Then for p ≥ 1 and u, v ∈ Lp(X),

(73) ‖ Tu − Tv ‖≤
N∑

i=1

c
1/p
i Ki ‖ u − v ‖ .

Corollary 6.10. If c =
∑N

i=1 ciK
p
i < 1, then T is contractive in Lp(X) with fixed point

ū ∈ Lp(X). The fixed point equation

(74) ū(x) = (T ū)(x) =
N∑

i=1

φi(ū(w−1
i ))(x)

indicates that ū is “self-similar,” i.e., that it can be written as a sum of spatially contracted
and greyscale-modified copies of itself.

It is also convenient to define IFSM operators with condensation functions. For example,
given a set of IFS maps wi, associated constants αi, and condensation function b(x), x ∈ X,
define the action of the associated operator T as follows: For u ∈ L(X),

(75) v(x) = (Tu)(x) = b(x) +
N∑

i=1

αiu(w−1
i (x)).
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