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Abstract. This paper explores the problem of breast tissue classifica-
tion of microscopy images. Based on the predominant cancer type the
goal is to classify images into four categories of normal, benign, in situ
carcinoma, and invasive carcinoma. Given a suitable training dataset,
we utilize deep learning techniques to address the classification problem.
Due to the large size of each image in the training dataset, we propose
a patch-based technique which consists of two consecutive convolutional
neural networks. The first “patch-wise” network acts as an auto-encoder
that extracts the most salient features of image patches while the second
“image-wise” network performs classification of the whole image. The
first network is pre-trained and aimed at extracting local information
while the second network obtains global information of an input im-
age. We trained the networks using the ICIAR 2018 grand challenge on
BreAst Cancer Histology (BACH) dataset. The proposed method yields
95% accuracy on the validation set compared to previously reported
77% accuracy rates in the literature. Our code is publicly available at
https://github.com/ImagingLab/ICIAR2018.
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1 Introduction

Breast cancer is one of the leading causes of cancer-related death in women
around the world [1]. According to Canadian Cancer Society, over 26, 000 women
were diagnosed with breast cancer in Canada in 2017 which represents 25% of
all new cancer cases in women. In the same year, more than 5, 000 women in
Canada lost their lives due to breast cancer which represents 13% of all cancer
deaths in women.

It is evident that early diagnosis can significantly increase treatment success.
Breast cancer symptoms and signs are varied and diagnosis includes physical
exam, mammography, ultrasound testing, and biopsy. Biopsy is generally per-
formed after detection of some abnormality using mammography and ultrasound.
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In biopsy, a sample of tissue is surgically removed to be analyzed. This can
indicate which cells are cancerous, and if so which type of cancer these are as-
sociated to. Microscopy imaging data of biopsy samples are large in size and
complex in nature. Therefore, pathologists face a substantial workload increase
for histopathological cancer diagnosis. In recent years, the development of com-
puter aid diagnosis (CAD) systems have helped reducing this workload. Digital
pathology continues to gain momentum worldwide for diagnostic purposes [2].

Recently, deep learning techniques have emerged to address many problems
in the field of medical image processing. We propose a classification scheme for
breast cancer tissue image classification based on deep convolutional neural net-
works (CNN). Convolutional networks are considered state of the art technique
for classification problems when the input is high-dimensional data such as im-
ages. These networks “learn” to extract local features from images and classify
the input according to the extracted features. Size of microscopy images are very
large and due to hardware barriers, several patch-based CNN methods have been
proposed in the literature [3,4,5] to process the input image as a set of smaller
patches. In these models, each image is divided into smaller patches and each
patch is classified with a “patch-wise” classifier network and assigned to a label.
To classify at the whole image level, the patch-wise network is followed by an-
other classifier that receives output labels from the first network as input and
generates label scores. These techniques achieve high accuracy with high confi-
dence on image patches, however, they fail to capture global attributes of the
image: Once all image patches are labelled, the spatial information is ignored
and any possible feature that is shared between patches is lost.

We propose a novel two-stage convolutional neural network pipeline in a
patch-wise fashion that is designed to utilize both local and global information
of the input. The proposed method does not require a large memory footprint of
the end-to-end training. In this scheme, the sole purpose of the patch-wise net-
work is to extract spatially smaller feature maps from each patch. Once trained,
this network is then used to extract the most salient feature maps from all
patches in an image based on their local information. These feature maps are
stacked together to form a spatially smaller 3D input for the “image-wise” net-
work. This network is trained to classify images based on local features extracted
from image and global information shared between different patches. We trained
our network using the ICIAR 2018 grand challenge on BreAst Cancer Histol-
ogy (BACH) dataset [6] containing 400 Hematoxylin and Eosin (H&E) stained
breast histology microscopy images. Our model has achieved 95% accuracy on
the validation set, outperforming [3] in terms of classification accuracy. 1

2 Related Works

Due to the importance of detection and classification of breast cancer in micro-
scopic tissue images, many new methods have emerged in recent years [3,4,5].

1 Our code and pre-trained weights are available at https://github.com/
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Computer aided diagnosis (CAD) systems appear to become fast and inexpensive
alternatives to second opinion methods. Recently, deep learning techniques have
made a huge impact in various problems including medical image processing.

In the past few years, several works aimed at breast cancer detection and
classification using CNNs have been published [7,8,9,10,11,5,12]. Although the
aim of all of these works are very similar, each work considers a specific type of
problem. For example, [7,8,9] are proposing a two class (malignant and benign)
classifier. Other works in [10,11] consider more complex 3-class classification
(normal, in situ carcinoma, and invasive carcinoma). Finally, [5,12] develop a
segmentation scheme for breast cancer.

Our work is similar to the work of Araújo et al. [3] in nature. To the best
of our knowledge they were the first team to consider a four class classifier for
breast tissue images. They developed a CNN followed by a support vector ma-
chines (SVM) classifier. In their technique, first the original image is divided
into twelve contiguous non-overlapping patches. The patch class probability is
computed using the patch-wise trained CNN and CNN+SVM classifiers. Finally,
the image-wise classification is obtained using three different patch probability
fusion methods. These three methods namely include “majority voting”, “max-
imum probability”, and “sum of probabilities” [3].

3 Methods

Given a high resolution (2048 × 1536) histology image, our goal is to classify
the image into four classes: normal tissue, benign tissue, in situ carcinoma and
invasive carcinoma.

3.1 Patch-Based Method with CNN

The high resolution nature of the images in our dataset and the need to extract
relevant discriminatory features from them impose extra limitations in imple-
menting a regular feed forward convolutional network. Training a CNN on high
resolution image requires either a very large memory footprint, which is not
available in most cases, or to progressively reduce the spatial size of the image
such that the downsampled version could be stored in the memory. However,
downsampling an image increases the risk of losing discriminative features such
as nuclei information and their densities to correctly classify carcinoma versus
non-carcinoma cells. Also, if trained on the large microscopy image, the network
might learn to rely only on the most distinctive features and totally discard
everything else.

We follow the patch-wise CNN method proposed by [3,4,5] followed by an
image-wise CNN that classifies histology images into four classes. Given a mi-
croscopy image, we extract fixed size patches by sliding a patch (window) of size
k× k with stride of s over an image. This makes a total number of [1 + IW−k

s ]×
[1 + IH−k

s ] patches where IW and IH are image width and height respectively.
In our experiments, we follow [3] and choose patch size of k = 512 considering
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the amount of GPU memory available. We also choose a stride of s = 256, which
results in 7 × 5 = 35 overlapping image patches. We argue that allowing the
overlap is essential for the patch-wise network to learn features shared between
patches. The proper stride s is chosen by considering the receptive field of both
networks when they “work” together, as explained later. An overview of our
two-stage CNN is presented in Figure 1. Note that the labels in the training set
are provided only for the whole image and individual patch labels are unknown,
yet we train the patch-wise network using categorical cross-entropy loss based
on the label of the corresponding microscopy image. This network works like an
auto-encoder that learns to extract the most salient features of image patches.
Once trained, we discard the classifier layer of this network and use the last con-
volutional layer to extract feature maps of size (C × 64 × 64) from any number
of patches in an image, where C is another hyper-parameter in our proposed
system that controls the depth of output feature maps as explained later.

To train the image-wise network, we no longer extract overlapping patches
from the image: with stride of s = 512 patches do not overlap and the total
patches extracted from an image becomes 12. We found non-overlapping patches
work slightly better in our validation set. We argue that it is because overlapping
patches introduce redundant features for a single concept and as a result accuracy
of the image-wise network will suffer. The extracted feature-maps from all 12
patches are concatenated together to form a spatially smaller 3D input of size
(12×C, 64, 64) for the image-wise network. This network is trained against image-
level labels using categorical cross-entropy loss and learns to classify images
based on local features extracted from image patches and global information
shared between different patches.

Fig. 1: An overview of the proposed workflow. A CNN is trained on image patches.
Feature maps extracted from all image patches are stacked together and passed to a
second CNN that learns to predict image-level labels.

Once both networks are trained, we use them jointly to infer image-level class
predictions.
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3.2 Network Architecture

Inspired by [13], we design our patch-wise CNN using a series of 3 × 3 convo-
lutional layers followed by a pooling layer with the number of channels being
doubled after each downsampling. All convolutional layers are followed by batch
normalization [14] and ReLU non-linearity [15]. We followed the guideline in
[16] to implement a homogeneous fully convolutional network with occasional
dimensionality reduction by using a stride of 2. In our tests, we found that 2× 2
kernel with stride of 2 worked better than conventional max-pooling layers in
terms of performance. Instead of fully connected layers for the classification task,
we use a 1 × 1 convolutional layer to obtain the spatial average of feature maps
from the convolutional layer below it, as the confidence categories and the re-
sulting vector is fed into the softmax layer [17]. We use this feature map later as
an input to the image-wise CNN. To further control and experiment the effect
of using spatial averaging layer, we introduce another hyper-parameter C that
controls the depth of the output feature maps. Both batch normalization and
global average pooling are structural regularizers [17,14] which natively prevent
overfitting. As a result, we did not introduce any dropout or weight decay in our
model. Overall, there are 16 convolutional layers in the network with the input
being downsampled 3 times at layers 3, 6, and 9. Figure 2 illustrates the overall
structure of the proposed patch-wise network.

Fig. 2: Patch-wise network architecture

For the proposed image-wise network we follow a similar pattern. Series of 3× 3
convolutional layers are followed by a 2×2 convolution with stride of 2 for down-
sampling. Each layer is followed by batch normalization and ReLU activation
function. We use the same 1× 1 convolutional layer as before to obtain the spa-
tial average of activation maps before the classifier. The convolutional layers are
followed by 3 fully connected layers with a softmax classifier at the end. Unlike
the patch-wise network, overfitting is a major problem for this network, as a
result, we heavily regularize this network using dropout [18] with the rate of 0.5
and use early stopping once the validation accuracy doesn’t improve to limit
overfitting. Network architecture is shown in Figure 3.
The receptive field of the last convolutional layer with respect to the patch-wise
network is 252 [19]. In principle, this number has to be the maximum stride
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Fig. 3: Image-wise network architecture

value s we can choose in extracting patches, in order to cover the whole surface
of the input image. In our experiments we found s = 256 has almost the same
accuracy. We argue that having large patch size (512 × 512) makes our network
invariant to small changes in s. Note that small values of s makes training time
slower and the network prone to overfitting.

4 Experiments and Results

Our dataset is composed of 400 high resolution Hematoxylin and Eosin (H&E)
stained breast histology microscopy images labelled as normal, benign, in situ
carcinoma, and invasive carcinoma (100 images for each category). These im-
ages are patches extracted from whole-slide images and annotated by two medical
experts. Images for which there was a disagreement between pathologists were
discarded. Figure 4 highlights the variability in sample images. The dataset was
available at https://iciar2018-challenge.grand-challenge.org/dataset/.

Fig. 4: Samples of ICIAR 2018 challenge on BreAst Cancer Histology (BACH) dataset

The size of dataset is relatively small for our convolutional network. To prevent
patch-wise network from overfitting, we apply several data augmentations on
patches extracted from the microscopy image. Pathology images do not have
canonical orientation and the classification problem is rotation invariant [12,3].
To augment the dataset we rotate each patch by 4 multiples of 90◦, with and
without mirroring, which results in 8 valid variations for each patch. We further
apply random color perturbations to these variations as suggested by [20] and
produce 8 more patches. The color augmentation process would help our model
to learn color-invariant features and make pre-processing color normalization [21]
step unnecessary. The total size of our patch-wise dataset becomes 16×35×400.

We train both networks on a single NVIDIA Titan XP GPU using Adam [22]
optimizer, mini-batch size of 64 and initial learning rate of 0.001, with a decay

https://iciar2018-challenge.grand-challenge.org/dataset/
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of 0.1 every 20 epochs. We train the patch-wise model on 80% of our dataset
for 30 epochs and used the remaining 20% for cross-validation. We use the same
train/validation sets for image-wise network.

The accuracy of the proposed method is measured as the ratio between cor-
rect samples and the total number of evaluated images. For our validation set of
80 images, our best model achieved 93.75% accuracy (Table 1) and mean Area
Under Curve (AUC) of 98.3 corresponding to (98.9, 97.7, 98.5, 98.1) for the four
classes (Table 2) based on Receiver Operating Characteristic (ROC) analysis. In
addition, we experimented with an ensemble model, averaging across 8 variations
of rotation/flip in the input image as suggested by [20] and further improved the
accuracy to 95.00%.

To compare our results with those of Araújo et al.[3], the image-wise labels
through a decision making scheme on outputs of the patch-wise network is also
presented in (Table 1). The image label is obtained using one of the three differ-
ent patch probability fusion methods. These methods include, majority voting,
where the image label is selected as the most common patch label, maximum
probability, where the patch with higher class probability decides the image la-
bel, and sum of probabilities, where the patch class probabilities are summed
up and the class with the largest value is assigned. As shown in (Table 1), our
proposed patch-wise network is outperforming previous methods by a large mar-
gin. To further experiment the effect of using spatial average layer at the end of

Table 1: Accuracy of the proposed method for one-channel output compared to [3]

Patch-wise Image-wise

Sum Max. Maj. CNN Ensemble

Proposed 91.25 92.50 90.00 93.75 95.00

Araújo et al.[3] 77.8 72.2 77.8 - -

the patch-wise network, we use the hyper-parameter C that controls the depth
of the output feature maps. We examined different values of C and measured
the accuracy using our validation set (Table 2). In our tests, the network with
only one output channel outperforms the others corroborating the idea that hav-
ing many filters for a single concept impose extra burden on the next network,
which needs to adjust with all variations from the previous network [17]. The
ROC curves for C = 1 and C = 4 are illustrated in Figure 5.

5 Conclusions and Future Work

In this manuscript, we considered the problem of breast cancer classification us-
ing microscopy tissue images. We utilized deep learning techniques and proposed
a novel two-stage CNN pipeline to overcome the hardware limitations imposed
by processing of very large images. The first so called patch-wise network acts
on the smaller patches of the whole image and outputs spatially smaller feature
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Fig. 5: Receiver Operating Characteristic (ROC) curves for two output sizes of the
patch-wise network. Left: 1-Channel feature map, Right: 4-Channel feature map

Table 2: Detailed results of both networks over different classes

Patch-wise Image-wise

Feature maps Class Precision Recall Accuracy Class Precision Recall AUC Accuracy

64 × 64 × 1

Normal 0.80 0.81

0.82

Normal 0.95 1.00 0.99

0.94
Benign 0.81 0.77 Benign 0.95 0.95 0.98

InSitu 0.76 0.85 InSitu 0.86 0.95 0.99

Invasive 0.93 0.86 Invasive 1.00 0.85 0.98

64 × 64 × 3

Normal 0.81 0.86

0.86

Normal 0.94 0.85 0.97

0.90
Benign 0.85 0.79 Benign 0.86 0.90 0.96

InSitu 0.86 0.88 InSitu 0.83 0.95 0.98

Invasive 0.93 0.90 Invasive 1.00 0.90 0.98

64 × 64 × 4

Normal 0.81 0.90

0.86

Normal 0.79 0.95 0.98

0.88
Benign 0.85 0.79 Benign 1.00 0.70 0.97

InSitu 0.90 0.84 InSitu 0.86 0.90 0.99

Invasive 0.90 0.93 Invasive 0.90 0.95 0.97

64 × 64 × 16

Normal 0.77 0.86

0.82

Normal 0.78 0.90 0.98

0.85
Benign 0.85 0.68 Benign 0.83 0.75 0.96

InSitu 0.80 0.87 InSitu 0.94 0.80 0.96

Invasive 0.86 0.85 Invasive 0.86 0.95 0.99

maps. The second network is performing on top of the patch-wise network. It re-
ceives stack of feature maps from the patch-wise network as input and generates
image-level label scores. In this framework, patch-wise network is responsible for
capturing the local features of the input while the image-wise network is learn-
ing to combine those features and find the relationship between neighbouring
patches to globally infer characteristics of the image and generate class confi-
dent scores. The main contribution of this work is presenting a pipeline which
is able to process large scale images using minimal hardware.
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We trained the networks using the ICIAR 2018 grand challenge on BreAst
Cancer Histology (BACH) dataset. The proposed method yields 95% accuracy
on the four-class validation set compared to previously reported 77% accuracy
rates in [3]. It is worth noting that inference time of our scheme is in the order
of milliseconds. The pre-trained weights of our networks are relatively small in
size (7.9MB patch-wise, 1.6MB image-wise) compared to other state-of-the-art
networks (hundreds of MB) which makes them suitable for practical settings.

We trained two networks separately on the same labels with the same loss
function. One might fairly argue that training the patch-wise network with the
same labels as the image-wise network is a disadvantage to the performance of
our model. Clearly, not every patch in an image represents the same category.

One alternative would be to train both networks end-to-end using only one
loss function that back-propagates through both networks. In this scheme, both
networks are interconnected to let the flow of gradient and therefore cost is
minimized by updating both networks’ parameters together. In our experiments,
we found that such model requires a very large memory footprint that makes it
impractical to apply in practice. We plan to further investigate this framework
in the future and focus on its improvements.
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