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1 Abstract

The process of recovering a high-resolution (HR) image from a set
of distorted (i.e. deformed, blurry, noisy, etc.) low-resolution (LR) im-
ages is known as super-resolution. Super-resolution problem will re-
quire the reconstruction of the HR image and estimations of motion
between LR images. In this study, image reconstruction and motion
estimation will be treated as a coupled problem. The proposed algo-
rithm uses an inverse model followed by a discretize-then-optimize
approach. Preliminary experiments on test data will be presented.

2 Mathematical Formulation

2.1 Problem Statement

Assume that all images are represented in the continuous domain.
Given a set of m LR images, y = {y1, . . . , ym}, yi: R2→R, we wish to
find a HR image f : Ω ⊂ R2→R, where Ω is the region of interest, and
a set of transformations u = {u1, . . . , um}, ui: R2→R2, that minimizes
the objective functional

J [u, f ] =
m

∑
i=1

D
[
yi,H f [ui]

]
+

m

∑
i=1

αiS[ui−ure f ]+βQ[ f ], (1)

where D
[
yi,Hf [ui]

]
is a distance measure between yi and Hf [ui] de-

fined as sum of squared differences, S[ui-ure f ] is the elastic regular-
izer, and Q[f ] is the total variation penalty on the computed image f .
α = {α i,. . . ,αm} ∈ Rm and β ∈ R are regularization parameters. It is
assumed that ure f (x)=x where x is the identity transformation. H is
the composition of blur and downsampling operators.

2.2 Discretization

Let D, S and Q represent the discretized counterparts of the distance
measure (D), elastic (S) and total variation (Q) regularizers respec-
tively. H is the discretized degradation operator, and corresponding
images and grids will now be represented by discrete vectors yi, f,
and ui. The discretization of the model can be obtained by a slight
modification to the objective functional

J[u,f] =
m

∑
i=1

D
[
yi,Hf[Pui]

]
+

m

∑
i=1

αiS[ui−uref]+βQ[f]. (2)

Note that the linear operator P was introduced to preserve grid con-
sistency, as elastic regularization is defined on staggered grid while
pixel intensity values are recorded at cell-centers.

2.3 Optimization

The objective functional will be optimized using `-BFGS. Partial deriva-
tives of the objective functional are computed as `-BFGS requires
the Jacobian to be explicitly defined. Let ri = yi - Hf[Pui], then

∂J
∂ui

=
∂D
∂ ri

∂ ri

∂ f
∂ f

∂ (Pui)

∂ (Pui)

∂ui
+αi

∂S
∂ui

= (rT
i )(−H)

(
∂ f

∂ (Pui)

)
(P)+αi

∂S
∂ui

(3)

for all i = 1, . . . , m, and

∂J
∂ f

=
m

∑
i=1

∂D
∂ ri

∂ ri

∂ f
+β

∂Q[f]
∂ f

=
m

∑
i=1

(rT
i )(−H)+βdQ[f]. (4)

3 Experimental Results

The experiment uses a 60-frame sequence of resolution 38x34. Fig.
1 displays a comparison between noiseless and noisy frames using
the parameters α = 300, β = 75 with 100 iterations. Noisy frames
are generated from the same image sequence by applying a zero
mean additive white Gaussian noise of σ = 1.

Fig. 1: Experimental results using 60 frames of noiseless (Row I) and
noisy (Row II) images with a zooming factor of 2. (a) y26 (Source frame #26)
(b) y26 2x resolution (bilinear interpolation) (c) Average of yi (d) Computed image f
(e) f[Pu26]

4 Conclusion and Future Work

Preliminary experiments show that results produced using noisy in-
puts are comparable to the results produced by its noiseless coun-
terparts. Computed results tend to be highly dependent on the initial
condition and values/ratio of α and β . Techniques such as multi-
level image registration may assist in determining more suitable ini-
tial conditions, while image reconstruction and motion detection may
be decoupled to reduce the difficulty in finding optimal values of
these parameters. Multi-modal super-resolution may also be ex-
plored as the proposed algorithm provides a flexible framework that
allows simple implementation of different regularization schemes.
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