Image registration in the presence of discontinuities

Nathan Cahill, Mehran Ebrahimi, Khaled Issa, Evgeniy Lebed, Alvin Ihsani, Dustin Steinhauer, Ali M. Montaz, Rolf Clackdoyle, Karteek Popuri, Yunho Kim

> FMIPW 2012 Toronto

August 24, 2012

We would like to perform nonrigid image registration in the presence of local growth, local shrinkage, or missing objects.

- Can the variational approach be modified to handle situations where the true physical deformation has a hole due to an object that is present in the reference image but absent in the floating image?
- What about situations where an object is present in the floating image but absent in the reference image?

Problem Statement

For instance,

Problem

Given two 2D images, $A, B : \Omega \to \mathbb{R}$, and a manually identified simply connected region $\Theta \subset \Omega$ that corresponds to a location in A,

- Register A to B by identifying a transformation $\Phi : \Omega \to \Omega$ such that $\exists x \in \Omega$ with $\Phi(\Theta) = x$ that minimizes a prescribed cost function,
- Register B to A by identifying a transformation $\Psi : \Omega \to \Omega \setminus \Theta$ that minimizes a prescribed cost function.

There are questions to ask to make the above problems more clear such as regularity and similarity measures. We have been trying to lay down a mathematical foundation.

Below are the ideas to tackle the proposed problem.

- 1. Cloaking
- 2. FEM Model
- 3. Level set Method
- 4. Block Matching Method
- 5. Shape Matching via Currents

What is cloaking?

• "Cloaking" is an analogy with the eponymous field of study in PDE that attempts to shield objects or charges from electromagnetic detection

What is cloaking?

- "Cloaking" is an analogy with the eponymous field of study in PDE that attempts to shield objects or charges from electromagnetic detection
- Since we want to create a diffeomorphism between a region with a hole and one without, we use change of variables to shrink the hole to a single point

Cloaking based approach (2)

No tumor present

A tumor has developed

Figure: Images of the same brain taken at different times

Cloaking based approach (3)

Figure: The sampling grid on the target image

Group 1 (FMIPW 2012)

Image registration with discontinuities

Final presentation 8 / 28

Cloaking based approach (4)

R, [291 234], α=1000000

T(0)

T(20)

T(xc), |dY|= 42.7128

|J(20)/Jstop|=58.3763%

Figure: The deformation from the source to the registered image

Group 1 (FMIPW 2012)

Image registration with discontinuities

Final presentation 9 / 28

• Approximate the deformation field as: $U(\mathbf{x}) = \sum_{n \in \mathcal{N}} U_n \phi_n(\mathbf{x}) \qquad \forall \mathbf{x} \in \Omega_A$

 $I_B:\Omega_B\to\mathbb{R}$

- Approximate the deformation field as: $\mathbf{U}(\mathbf{x}) = \sum_{n \in \mathcal{N}} \mathbf{U}_n \phi_n(\mathbf{x}) \quad \forall \mathbf{x} \in \Omega_A$
- Partition the nodes into two disjoint sets as: $\mathcal{N} = \mathcal{N}_1$ (normal) $\cup \mathcal{N}_2$ (tumor)

- Approximate the deformation field as: $\mathbf{U}(\mathbf{x}) = \sum_{n \in \mathcal{N}} \mathbf{U}_n \phi_n(\mathbf{x}) \qquad \forall \mathbf{x} \in \Omega_A$
- Partition the nodes into two disjoint sets as: $\mathcal{N} = \mathcal{N}_1$ (normal) $\cup \mathcal{N}_2$ (tumor)
- Constrain nodes in the tumor region: $\mathbf{U}_n = \mathbf{x}^* \mathbf{p}_n$, for some $\mathbf{x}^* \in \Omega_B$ and $\forall n \in \mathcal{N}_2$

- Approximate the deformation field as: $\mathbf{U}(\mathbf{x}) = \sum_{n \in \mathcal{N}} \mathbf{U}_n \phi_n(\mathbf{x}) \qquad \forall \mathbf{x} \in \Omega_A$
- Partition the nodes into two disjoint sets as: $\mathcal{N} = \mathcal{N}_1$ (normal) $\cup \mathcal{N}_2$ (tumor)
- Constrain nodes in the tumor region: $\mathbf{U}_n = \mathbf{x}^* \mathbf{p}_n$, for some $\mathbf{x}^* \in \Omega_B$ and $\forall n \in \mathcal{N}_2$
- Re-write the deformation field as:

$$\mathbf{U}(\mathbf{x}) = \sum_{n \in \mathcal{N}_1} \mathbf{U}_n \phi_n(\mathbf{x}) + \sum_{n \in \mathcal{N}_2} (\mathbf{x}^* - \mathbf{p}_n) \phi_n(\mathbf{x}) \quad \forall \mathbf{x} \in \Omega_A$$

• Need to estimate the unknowns $\{\mathbf{U}_n\}_{n\in\mathcal{N}_1}$ and \mathbf{x}^*

• Finite-dimensional multivariate energy minimization to estimate the set of unknowns $\Theta = \{U_n\}_{n \in \mathcal{N}_1} \cup \{x^*\}:$

$$\Theta^* = \underset{\Theta \in \mathbb{R}^{(|\mathcal{N}_1|+1)d}}{\operatorname{argmin}} E_D(\Theta; I_A, I_B) + \gamma E_R(\Theta)$$

• The sum of squared differences (SSD) data term and diffusion-based regularizer:

$$E_{D} \equiv E_{D}^{\mathrm{SSD}}(\boldsymbol{\Theta}; I_{A}, I_{B}) = \frac{1}{2} \int_{\Omega_{A}} M(\mathbf{x}) \left(I_{B}(\mathbf{x} + \sum_{n \in \mathcal{N}_{1}} \mathbf{U}_{n} \phi_{n} + \sum_{n \in \mathcal{N}_{2}} (\mathbf{x}^{*} - \mathbf{p}_{n}) \phi_{n}) - I_{A}(\mathbf{x}) \right)^{2} d\mathbf{x}$$

$$E_{R} \equiv E_{R}^{\mathrm{diff}}(\boldsymbol{\Theta}) = \frac{1}{2} \sum_{i=1}^{d} \left(\sum_{n \in \mathcal{N}_{1}} U_{ni} \sum_{m \in \mathcal{N}_{1}} U_{mi} \Gamma_{nm} + 2 \sum_{n \in \mathcal{N}_{1}} U_{ni} \sum_{m \in \mathcal{N}_{2}} (\mathbf{x}^{*} - \mathbf{p}_{m}) \Gamma_{nm} \dots + \sum_{n \in \mathcal{N}_{2}} (\mathbf{x}^{*} - \mathbf{p}_{n}) \sum_{m \in \mathcal{N}_{2}} (\mathbf{x}^{*} - \mathbf{p}_{m}) \Gamma_{nm} \right)$$

- $M(\mathbf{x})$: normal region indicator function
- $\Gamma_{nm} = \int_{\Omega_A} (D\nabla \phi_n)^{\mathrm{T}} \nabla \phi_m \, d\mathbf{x} \quad \text{and} \quad \mathbf{U}_n = [U_{ni}]_{i=1}^d$
- Incremental semi-implicit fixed point iteration scheme to solve the non-linear equations:

$$\begin{split} \mathbf{\Theta}_{i}^{k+1} &= \mathbf{\Theta}_{i}^{k} + \delta \mathbf{\Theta}_{i}^{k} & \mathbf{\Theta} = [\mathbf{\Theta}_{i}]_{i=1}^{d} \\ (\mathrm{Id}_{N} + \tau \mathbf{K}) \delta \mathbf{\Theta}_{i}^{k} &= (-\tau \mathbf{K} \mathbf{\Theta}_{i}^{k} + \tau \mathbf{L}_{i}(\mathbf{\Theta}^{k})) & \mathbf{K} = [[\Gamma_{nm}]_{n=1}^{|\mathcal{N}_{1}|+1}]_{m=1}^{|\mathcal{N}_{1}|+1} \end{split}$$

Group 1 (FMIPW 2012)

Final presentation 11 / 28

"Is there an analogy to level-sets? (i.e., can we create a function φ that depends on the transformation for which $\varphi(u) = 0$ when u optimally aligns the images?)"

"Is there an analogy to level-sets? (i.e., can we create a function φ that depends on the transformation for which $\varphi(u) = 0$ when u optimally aligns the images?)"

Level sets and image registration

"Is there an analogy to level-sets? (i.e., can we create a function φ that depends on the transformation for which $\varphi(u) = 0$ when u optimally aligns the images?)"

Level sets are used in image processing, especially image segmentation

Level sets and image registration

"Is there an analogy to level-sets? (i.e., can we create a function φ that depends on the transformation for which $\varphi(u) = 0$ when u optimally aligns the images?)"

Level sets are used in image processing, especially image segmentation Two responses. . .

- (1) level sets to represent deformations
- (2) deforming the level set functions

• $\varphi: \Omega \to \mathbb{R}$ is the level set function $(\Omega \subset \mathbb{R}^2)$

- $\varphi: \Omega \to \mathbb{R}$ is the level set function $(\Omega \subset \mathbb{R}^2)$
- Note that the level set, $L = \{x | \varphi(x) < 0\}$, is a subset of Ω

- $\varphi: \Omega \to \mathbb{R}$ is the level set function $(\Omega \subset \mathbb{R}^2)$
- Note that the level set, L = {x |φ(x) < 0}, is a subset of Ω
- Equivalently, L is a binary image (equiv to $L: \Omega \rightarrow \{0, 1\}$)

- $\varphi: \Omega \to \mathbb{R}$ is the level set function $(\Omega \subset \mathbb{R}^2)$
- Note that the level set, $L = \{x | \varphi(x) < 0\}$, is a subset of Ω
- Equivalently, L is a binary image (equiv to $L: \Omega \rightarrow \{0, 1\}$)

For deformations ... what can we use for Ω such that *L* is a deformation? ("in what sense is a deformation the same as a subset of something?")

Let $u: \Omega_A \to \Omega_B$ be a deformation. Let $\Omega_B = N \times N$, with $N = 2^k$

Let $u : \Omega_A \to \Omega_B$ be a deformation. Let $\Omega_B = N \times N$, with $N = 2^k$ We represent u using 2k level set functions $\varphi_1, \varphi_2, \dots, \varphi_{2k}$ Let $u : \Omega_A \to \Omega_B$ be a deformation. Let $\Omega_B = N \times N$, with $N = 2^k$ We represent u using 2k level set functions $\varphi_1, \varphi_2, \dots, \varphi_{2k}$

Each level set: a binary image, providing one bit of representation for Ω_B

(1) Level sets to represent deformations

Let $u: \Omega_A \to \Omega_B$ be a deformation. Let $\Omega_B = N \times N$, with $N = 2^k$ We represent u using 2k level set functions $\varphi_1, \varphi_2, \dots, \varphi_{2k}$

Each level set: a binary image, providing one bit of representation for $\Omega_{\mathcal{B}}$

Let $u: \Omega_A \to \Omega_B$ be a deformation. Let $\Omega_B = N \times N$, with $N = 2^k$ We represent u using 2k level set functions $\varphi_1, \varphi_2, \dots \varphi_{2k}$

Each level set: a binary image, providing one bit of representation for Ω_B

Let $u: \Omega_A \to \Omega_B$ be a deformation. Let $\Omega_B = N \times N$, with $N = 2^k$ We represent u using 2k level set functions $\varphi_1, \varphi_2, \dots \varphi_{2k}$

Each level set: a binary image, providing one bit of representation for Ω_B

Is this level-set representation of deformations useful for registration?

"Is there an analogy to level-sets? (i.e., can we create a function φ that depends on the transformation for which $\varphi(u) = 0$ when u optimally aligns the images?)"

Alvin Ihsani's insight (yesterday 11 AM):

- leave the level sets to represent images
- apply deformations to the level set function

Problem Setting

Assume we are given two images:

- ullet a template image ${\mathcal T}$
- $\bullet\,$ a reference image ${\cal R}$

```
such that \mathcal{T}, \mathcal{R} : \Omega \to c_i where i = 1, \ldots, N and \Omega \subset \mathbb{R}^2.
```

Problem

Find a transformation that is able to map corresponding features in \mathcal{T} to \mathcal{R} , but is not necessarily topology preserving.

- Features that exist in \mathcal{T} but not in \mathcal{R} should disappear and be occupied by nearby features in \mathcal{R} in a meaningful way.
- \bullet Features that do not exist in ${\cal T}$ but exist in ${\cal R}$ should appear in ${\cal T}$ in a meaningful way.
- Features that exist both in \mathcal{T} and \mathcal{R} should map in a meaningful way, even when they change topology (i.e. bagel and bagel cut in half).

Let $\phi_i : \mathbb{R}^2 \to \mathbb{R}$ and

$$\mathcal{L}_i = \{ x \in \Omega | \phi_i(x) \leq 0 \}$$

such that

$$\begin{cases} \mathcal{L}_i \cap \mathcal{L}_j = \emptyset & \forall i \neq j \text{ (a.e.)} \\ \bigcup_{i=1}^{N} \mathcal{L}_i = \Omega \end{cases}$$

then indicator functions $\mathcal{K}_i: \Omega \times \mathbb{R} \to \{0,1\}$ can be defined such that

$$\mathcal{K}_i(z,x) = \begin{cases} 1, & z < \phi_i(x) \\ 0, & z \ge \phi_i(x) \end{cases}$$

where $z \in \mathbb{R}$.

Furthermore, let $V : \Omega \times \mathbb{R} \to \mathbb{R}$

$$V(x,z) = \sum_{i=1}^{N} c_i K_i(x,z)$$

such that

$$\mathcal{T}(x) = \left. V(x,z) \right|_{z=0}.$$

Let a transformation $u: \Omega \times \mathbb{R} \to \Omega \times \mathbb{R}$ then a new image \mathcal{T}' can be obtained as

$$\mathcal{T}'(x) = \left. V(u(x,z)) \right|_{z=0}.$$

Model Example

 \mathcal{T} is embedded in the zero level-set of V.

Examples of Rigid Transformations (Case 1)

These images can be registered using a rigid transformation.

Examples of Rigid Transformations (Case 1)

These images can be registered using a rigid transformation by shifting.

Examples of Rigid Transformations (Case 2)

These images can be registered using a rigid transformation also.

Examples of Rigid Transformations (Case 2)

These images can be registered using a rigid transformation also by applying a rotation.

A general formulation of the problem where the template image ${\cal T}$ is represented by level-sets can be

$$\min_{u} \int_{\Omega} (V(u(x,z))|_{z=0} - R(x))^2 dx + \alpha S(u)$$

where

- the first term measures the sums of squared differences between the two images
- the second term regularizes the transformation.

- The advantage of this formulation is that even though u may be diffeomorphic, it will allow for topological changes in the subspace Ω.
- While this formulation may provide some additional flexibility "its abilities" are restricted by the choice of functions ϕ_i , which are constant, and by the regularization of the transformation u.

- Divide Ref and Source images into blocks
- Define the features of each block by calculating all possible correlations between pixels
- Apply block matching to find the total cost of moving from the ref image to the target image

Local block-matching approach (2)

Source image

Registere d im age

[Marc Vaillant and Joan Glaunes - Surface matching via currents]

- Find an "optimal" deformation between two arbitrary surfaces
- Build a norm on the space of surfaces via representation by currents of geometric measure theory
- Why represent surfaces as currents? They inherit natural transformation properties from differential forms
- Impose a Hilbert space structure on currents, whose norm gives a convenient way to define a matching functional
- Optimal solution to the matching problem is guaranteed to be one-to-one regular map of the entire ambient space
- Found by minimizing a functional consisting of a *regularizing term* + *data attachment term*

Examples

