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Abstract

We propose a mathematical formulation aimed at intensity-based slice-to-volume regis-

tration, aligning a cross-sectional slice of a 3D volume to a 2D image. The approach is

flexible and can accommodate various regularization schemes, similarity measures, and

optimizers. We evaluate the framework by registering 2D and 3D cardiac magnetic res-

onance (MR) images obtained in vivo, aimed at image-guided surgery applications that

utilise real-time MR imaging as a visualization tool. Rigid-body and affine transfor-

mations are used to validate the parametric model. Target registration error (TRE),

Jaccard, and Dice indices are used to evaluate the algorithm and demonstrate the accu-

racy of the registration scheme on both simulated and clinical data. Registration with the

affine model appeared to be more robust than the rigid model in controlled registration

experiments. By simply extending the rigid model to an affine model, alignment of the

cardiac region generally improved, without the need for complex dissimilarity measures

or regularizers.

Keywords: image registration, inverse problems, slice-to-volume registration model, 2D

to 3D alignment, cardiac MRI, multi-level, multi-resolution, optimization
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Chapter 1

Introduction

1.1 Problem Statement

Image registration is the task of aligning one image to another image. In a modern age

where cameras are ubiquitous items, registration techniques find many applications, such

as in image stitching. Image registration also finds important applications in clinical

settings, where imaging equipment are indispensable diagnostic tools. It is useful at

times for physicians to obtain images of the same region with different imaging methods,

such as X-rays and magnetic resonance imaging (MRI), since different imaging methods

contrast various body tissues differently. To combine information from two images taken

at different times and see certain features in relation to other anatomical features, it

may be necessary to align or register the images together. Other clinical applications

include image-guided surgery, where registration can be used to combine pre-operative

information with intra-operative information during surgery.

Cardiovascular disease is the leading cause of death globally, claiming more lives than

cancer and chronic lower respiratory disease combined [M+15]. In Canada, cardiovascular

disease is responsible for approximately 1 in every 3 deaths, with a quarter of those deaths

resulting from myocardial infarction (MI) [Pub09].
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Reentrant arrhythmias are a common complication in patients with a history of MI

[Ros13, KS09, KCKK06]. The arrhythmia is triggered when scarring disrupts electrical

activity in the heart. Arrhythmias in the ventricles are potentially life threatening be-

cause they can render the heart unable to effectively circulate blood through the body,

and are associated with increased risk of sudden cardiac death [KS09, KCKK06].

A range of treatment options exist, from non-invasive antiarrhythmic drugs to invasive

procedures such as catheter ablation of problem areas of the heart [Ros13, SS07b, S+08].

Catheter ablation is traditionally guided by X-ray fluoroscopy [BDTM12], but because

of the ionizing radiation involved, alternative visualization methods have been proposed

for use during surgical procedures [Lar00, TPL+14].

Studies on carcinogenesis related to partial-body radiation exposure at levels used in

medical imaging have produced conflicting results, so patient and staff exposure to X-rays

should be kept minimal as a precaution [Jar16, G+09]. For example, [CCB+12] and [L+04]

report an association between dental X-rays and the risk of meningioma, while [XLH+15]

found no association between X-rays and meningioma. MRI is a well-known imaging

technique that exploits the way different atoms behave in a magnetic field when perturbed

by pulses of radio-frequency waves. Unlike X-rays, MRI does not measure tissue density

along a projection axis and does not require the use of ionizing radiation. Different

tissues contain different proportions of atoms and thus behave differently depending on

the frequency of the radio waves, allowing MRI to distinguish between different types of

soft tissues without the injection of contrast agents.

Additionally, because of its superior soft tissue contrast compared to X-rays, MRI

better captures anatomical features in and around the heart and has been proposed as

an alternative to guide catheter ablation and to aid pre-procedural planning [TPL+14].

Recently, hybrid X-ray and MR (XMR) systems have been developed and tested for

use in cardiac procedures, including catheterization, as a step towards reducing patient

exposure to X-rays and toward fully MRI-guided intervention [BDTM12, R+03a, R+05,
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A+97, vV98, D+05, Moo05].

MRI-guided procedures necessitate fast imaging techniques to capture 2D images in

real-time. Fortunately, MR sequences for real-time visualization exist and have been

used to guide catheterization procedures in studies on swine [B+02, SSH+03, R+03b,

H+10, S+09], dogs [L+00, S+06, SYF+03], and humans [PTR14] and have been shown

to be feasible. Other advantages of MRI over X-ray fluoroscopy commonly cited are the

ability to easily adjust the positions of the imaging planes to access areas of interest

[KHB+08, PTR14, R+03b, SS07a] and capture depth information without the need for

multiple projections (as is the case for X-rays) as well as the ability to provide 3D

anatomical information in the form of multi-planar volumes [SSH+03, PTR14, KHB+08,

R+05, SS07a].

One obstacle to MRI-guided catheterization is the limited availability of MRI-safe

tools and electronic equipment to be used during intervention [Moo05]. Most catheters

were designed to be used with X-rays and potentially contain materials rendering them

hazardous in a strong magnetic field or induce artefacts, or are almost invisible in MR

scans [MR05, R+05, KHB+08]. Implantable cardioverter defibrillators (ICDs) in patients

must also be MRI-safe.

The comparison between pre-operative images and intra-operative images is essen-

tial to image-guided procedures. Pre-operative images are used in treatment planning

while 2D intra-operative images provide live positional updates to aid surgeons in car-

rying out treatment. The tradeoff between image quality and acquisition time means

that high-quality 3D MR image volumes can be acquired prior to intervention without

the constraints of producing images at real-time frame rates. Each volume consists of a

stack of 2D image slices, with each of those slices imaged at a resolution higher than that

of the 2D real-time images, allowing anatomical features to be seen in detail. During

MRI-guided procedures, surgeons can only depend on a mental picture of how the 2D

real-time images are positioned relative to the 3D pre-procedural images, so ideally, one
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would register the 3D pre-procedural images to 2D real-time images. Registration would

combine the advantages of both image types – the image quality of the pre-procedural im-

ages and the live positional updates of the intra-operative images – to obtain high-quality

images that account for small amounts of motion, such as motion due to respiration, in

real time.

In this thesis we present a mathematical framework for slice-to-volume 2D-3D regis-

tration, implement registration on cardiac MR images, and investigate the ill-posedness

that arises from an affine registration model.

1.2 Literature Survey

Many papers have been published presenting methods to register 3D pre-operative images

to 2D intra-operative images in clinical applications. [TLSP03] presents a solely intensity-

based approach to registering a pre-operative 3D CT or MR image to an intra-operative

2D X-ray image, with no fiducial markers or need for intra-operative X-ray segmentation

or any sort of digital reconstruction. [PBH+01] validates an algorithm that registers 3D

pre-operative CT volumes to intra-operative 2D (X-ray) fluoroscopy images. [TLP06]

presents a novel 2D-3D registration method that registers a 3D CT or MR image to a

3D image reconstructed from a set of two or more intra-operative X-ray images. [XW08]

presents an efficient 2D-3D registration method to register a 3D volume to a simulated

X-ray image and implements it in parallel. [MTPL08] presents a gradient-based method

to register pre-operative 3D CT or MRI volumes to intra-operative 2D X-rays. [LYJ03]

presents a gradient-based rigid-body registration method for registering pre-operative

CT or MRI to intra-operative fluoroscopic X-ray or ultrasound images with applications

to image-guided surgery and robotic positioning and validates the method on various

simulated and in vitro conditions.

Numerous studies in the literature focus on alignment of pre-operative images to X-
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ray intra-operative images (fluoroscopy and CT use X-rays). Due to the drawbacks of

X-rays, however, more recent studies have begun to examine the use of MRI instead of

X-rays in some applications, especially when imaging areas containing large amounts of

soft tissue.

During MRI-guided procedures, acquisition time for real-time, intra-operative images

is limited and therefore noisier compared to pre-operative images. Real-time images are

also only available in 2D, whereas the high-quality pre-operative images are available in

3D. One way of combining information from both pre- and intra-operative images is to

register them.

In registering 3D to 2D images, there is a distinction between the 2D image being

an X-ray or an MR image. X-rays is a projection imaging modality, whereas a 2D MR

image is obtained by imaging a cross-sectional slice of the 3D object. In registering a

3D image to a cross-sectional slice of a volume, information outside of the plane is lost,

whereas in registering a 3D volume to a projection, elements of the 3D volume along

projection rays are retained.

Methods to perform slice-to-volume registration have been proposed. [DA08] presents

a slice-to-volume rigid registration method based on phase congruency and validates the

method on simulated MR images, but registers multiple slices to a volume instead of a

single slice and is feature-based. [OK10] presents a non-rigid slice-to-volume registration

method that combines a rigid registration step with a deformable registration step. [Z+10]

proposed a registration using Markov random fields (MRF) and optimization methods

and performed registration with rigid, similarity, and affine transformations. [FP13] and

[FFP15] also present methods based on MRF and optimization, but for deformable (not

rigid) registration. [B+07] implements rigid slice-to-volume registration between CT and

FluoroCT images, which are cross-sectional slices, not projective images, and notes the

need for strict breath-hold techniques to reduce artefacts due to respiratory motion when

rigid registration is employed.
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Of interest to us is the application of slice-to-volume registration to MRI-guided

procedures. [XLF+15] developed a multi-slice-to-volume registration algorithm to align

images in the context of MRI-guided biopsy, but on a more relevant note, work has

also been done in vivo on pigs to register 2D intra-operative cardiac MR image slices to

pre-operative MR image volumes [SWD04, SWWFD05].

In humans, 2D-3D slice-to-volume registration between high-quality pre-operative

MR image volumes and live-time intra-operative MR images have been studied for ap-

plications to MRI-guided ablation of prostate cancer [FDB+03]. [XW15] also present

registration of high-quality pre-operative MR image volumes to live cardiac MR images

on human volunteers in vivo with applications to MRI-guided radiofrequency ablation

of substrate in the heart, but also focuses on registration incorporating rigid-body trans-

formations.

In most of the studies mentioned above, rigid-body registration was employed. Align-

ments are only made by translating and rotating the 3D volume to match a 2D projection

or slice. While rigid registration is generally employed to reduce computational cost and

to speed up the registration process, it risks oversimplifying the displacement of body

tissues, which are generally not rigid. The highly deformable nature of the heart and

displacement at various stages of the breathing cycle make registration of the cardiac

region more challenging. Registration accuracy at the millimetre scale is important dur-

ing image-guided cardiac intervention, but is influenced by various imaging parameters.

Deformable registration may be more accurate, but is computationally much more ex-

pensive.

1.3 Objective

2D-2D and 3D-3D rigid and affine registration is widely employed and readily available

in software such as Insight Segmentation and Registration Toolkit (ITK), and methods
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for projective 2D-3D registration have been and are being researched, particularly for

applications involving X-rays or X-ray fluoroscopy (such as some image-guided electro-

physiology procedures).

Work involving 2D-3D slice-to-volume registration has been fairly recent and not

nearly as numerous as projective 2D-3D registration, especially with respect to applica-

tions in MRI-guided procedures. In addition, there seems to be a lack of precise model

in the literature, in contrast to 2D-2D or 3D-3D registration [Mod09].

We propose a general mathematical framework for slice-to-volume registration which

can accommodate parametric and non-parametric transformation models. A rigid trans-

formation model can be used in this framework, but the user can easily adapt a different

parametric transformation model.

We will demonstrate this framework on parametric models, specifically, using this

framework to extend existing 2D-3D rigid registration to affine registration. Although

the number of parameters in an affine parametric model (12 parameters) is twice the

number of parameters in a rigid model (6 parameters), the figure dwarfs in comparison

to the number of parameters dealt with in deformable registration, and thus is still a

computationally inexpensive method that accounts for some non-rigid deformations.

The intensity-based registration framework is flexible and can accommodate various

models and parameters. We demonstrate by registering high-resolution 3D MR images to

noisier 2D real-time MR images, using rigid and affine parametric models, and investigate

the ill-posedness of 2D-3D registration as an inverse problem.

1.4 Outline

In Chapter 2, I will briefly discuss some background to the thesis – notes on software

used, a review of parametric transformations, and a brief introduction to mathematical

optimization, the core of image registration. In Chapter 3, 2D-2D image registration will
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be introduced as an optimization problem to familiarize the reader with the basic con-

cepts, then present a 2D-3D slice-to-volume registration model, which is investigated as

an inverse problem. Chapter 4 discusses various registration experiments performed on

cardiac MR images to test our model. It also describes the data used as well as methods

used in validating the results and some discussion of the results. Finally, Chapter 5 sum-

marizes our observations of experimental results and includes general remarks regarding

the slice-to-volume registration model, and concludes with topics of further interest to

us should we be presented with the opportunity to expand on the work presented here.



Chapter 2

Preliminary Notes

2.1 Software

MATLAB1 was chosen for implementation due to its simplicity, its arsenal of built-in

functions and image viewing tools, and handy debugging tools. Though not the fastest

or most efficient language (compared to C, for example), MATLAB is geared towards

mathematical applications so one can write technical code in a straightforward manner

without having to deal with the intricacies of the programming task. Because this project

focusses on the mathematical modelling aspects of image registration, speed and efficient

use of computational resources were not top priority.

Jan Modersitzki’s Flexible Algorithms for Image Registration (FAIR) [Mod09] is a

code package written mostly in MATLAB to perform 2D-2D registration and 3D-3D

registration. Modersitzki also has an accompanying book of the same name documenting

the code.

To avoid re-inventing the wheel, our 2D-3D registration codes are written as an add-on

to FAIR, keeping a similar workflow and using FAIR code whenever possible.

1 c©2016 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks,
Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names
may be trademarks or registered trademarks of their respective holders.

9
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2.2 Parametric Transformations and Inverses

Various 2D parametric transformations on a point x = (x1, x2)T ∈ R2 or 3D parametric

transformations on a point x = (x1, x2, x3)T ∈ R3 are defined in this section. Each

transformation is parameterized by w. Superscripts 1, 2, and 3 each relate to the x-, y-,

and z-coordinates in the Cartesian coordinate system, respectively.

2D Rigid In 2D, w contains 3 parameters: 1 rotation (w1) and 2 translations (w2, w3).

(Some conventions refer to translations as shifts.) A rigid transformation on x is

y(w, x) =

cosw1 − sinw1

sinw1 cosw1

x+

w2

w3

 .

2D Rigid – Inverse The inverse transform can be obtained by inverting the translation

and then the rotation.

The inverse transformation would simply involve negating the translation terms and

rotating in the opposite direction:

x =

cos(−w1) − sin(−w1)

sin(−w1) cos(−w1)


y −

w1

w2




=

cos(w1) − sin(w1)

sin(w1) cos(w1)


T y −

w1

w2


 .

Note that rotation matrices are orthogonal (i.e. if a matrix Q is orthogonal, Q−1 = QT ),

so the inverse of a rotation matrix is its transpose.

3D Rigid In 3D, the transformation consists of 3 rotations followed by 3 translations:

y(w, x) = R1(w1)R2(w2)R3(w3)x+


w4

w5

w6

 . (2.1)
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w4, w5, and w6 are translations in the x-, y-, and z-directions, respectively. If w1, w2,

and w3 are angles of rotation about the x-, y-, and z-axes, rotation operations about the

x-, y-, and z-axes are defined to be

R1(w1) =


1 0 0

0 cosw1 − sinw1

0 sinw1 cosw1

 , R2(w2) =


cosw1 0 sinw1

0 1 0

− sinw1 0 cosw1

 , (2.2)

and R3(w3) =


cosw3 − sinw3 0

sinw3 cosw3 0

0 0 1

 . (2.3)

3D Rigid – Inverse For convenience, let us define the composition of the three ro-

tations to be R = R1(w1)R2(w2)R3(w3). As in the 2D case, if the forward transform

is

y(w, x) = Rx+


w4

w5

w6

 , (2.4)

then

x = R−1

y −

w4

w5

w6


 = RT

y −

w4

w5

w6


 , (2.5)

since the matrix Rw is orthogonal.

2D Affine In 2D, the affine transformation is parametrized by 6 parameters

w = (w1, w2, . . . , w6). If we define

A =

w1 w2

w4 w5

 and b =

w3

w6

 , (2.6)

the transformation on a point x = (x1, x2)T is

y(w, x) = Ax+ b.
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2D Affine – Inverse Assuming that A is invertible, the inverse process is similar to

the rigid case. We obtain

x = A−1 (y − b) . (2.7)

In registering images of real objects, transformations are required to be realistic and

physically feasible. It is safe to assume that all parametric transformations in this the-

sis, which are applied to cardiac MR images, are physically feasible and therefore non-

degenerate and invertible.

3D Affine If we define

A =


w1 w2 w3

w5 w6 w7

w9 w10 w11

 and b =


w4

w8

w12

 , (2.8)

then an 3D affine transformation on a point with coordinates x = (x1, x2, x3)T is defined

as

y(w, x) = Ax+ b.

3D Affine – Inverse Again, assuming that the transformation A is physically feasible

and therefore invertible,

x = A−1(y − b). (2.9)

2.3 Optimisation

Mathematical optimization involves determining parameters that will maximize or min-

imize the value of a function. We will use the terms optimization and minimization

interchangeably in this thesis, since the maximization of a function is equivalent to the

minimization of the negative of the function. The function is usually called the objective
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function or the cost because it is the value in question we want to reduce or a penalty to

be avoided.

Some objective functions are fairly simple to optimize and can be done analytically.

One such example is finding the quickest path on which an ideal point object would roll

down under the influence of gravity, for which the solution is called a brachistone curve.

The solution is a general one, so parameters can be substituted into the solution to tailor

it to a specific situation.

Other objective functions are more complex and may not have a solution in the form

of an analytical expression. Or, the number of variables and parameters involved is too

large to be solved using pen and paper. These problems may be difficult on paper, but

such problems can be discretized and solved iteratively to approximate a solution. Many

numerical methods have been developed and used to solve various problems computa-

tionally [CdB80, NW06, QSS07, BGLS06].

Image processing is often a repetitive task, where evaluations and calculations are

repeatedly performed over individual pixels or voxels in an image. The problem in ques-

tion may also be a complex one, necessitating brute-force numerics in determining an

approximate solution. This calls for numerical methods.

In the next section, image registration is introduced as a minimization problem and

discussed.



Chapter 3

Image Registration

Image registration is the process of finding a transformation on the coordinates of the

pixels or voxels of one image to align it to another. Registration techniques can generally

be divided into two categories: intensity-based and landmark-based methods. Intensity-

based methods perform registration based on pixel or voxel intensities of the images,

whereas landmark-based or geometry-based methods use markers or features of the image

and track the movement of these markers or features. Because landmark-based methods

rely on features in the image, such methods require fiducial markers or segmentation to

be performed beforehand, whereas intensity-based methods do not single out features and

rely only on the intensity values of an image. This thesis will solely relate to intensity-

based methods.

3.1 Introduction to 2D-2D Registration

It is helpful to first familiarize ourselves with the language and conventions used in 2D-2D

registration before 2D-3D registration is introduced.

Consider the problem of aligning a 2D ‘template’ image T to another 2D ‘reference’

image R, where R is a realization of T deformed via a transformation. The reference

and template images are defined over the 2D domain Ω and are represented by mappings

14
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R : Ω ⊂ R2 → R and T : Ω ⊂ R2 → R of compact support.

The following is written for 2D-2D registration, but can easily be generalized to 3D-3D

registration.

3.2 2D-2D Objective Function

The goal is to find a transformation y : R2 → R2 on the set of coordinates x ∈ Ω ⊂ R2

that makes the transformed template image T most similar to the reference image R.

The objective function to be minimized is

J [y] := D[T (y(x)),R(x)] + S[y(x)], (3.1)

D is a measure of dissimilarity between images T and R. S, called the regularizer, im-

poses restrictions on the transformation y.

Registration is ill-posed in general, so there may be more than a single solution for

a given problem. We can impose restrictions on the transformation in the form of a

regularizer, which imposes penalties on certain transformations by increasing the value

of the objective function. An obvious example is registering the two images of a square

in Figure 3.1. If θ represents the rotation angle about the origin, there are already an

infinite number of solutions θ = π
4

+ k π
2
, k ∈ Z. A regularizer could be added to restrict

the number of solutions, for example, one which keeps the amount of rotation small by

penalising the value of |k| or k2.

Both D and S will be discussed in further detail in Sections 3.4, 3.8, and 3.9. Knowl-

edge about the imaging methods used to obtain T and R and about the objects imaged

can aid in choosing a dissimilarity measure and a regularizer.
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Figure 3.1: A registration problem with infinitely many solutions. There is not one

unique solution but an infinite number of transformations that would register one to the

other.

3.3 2D-2D Parametrized Objective Function

Suppose that the transformation y can be parametrized via parameters w. The num-

ber of parameters contained in w will depend on the transformation chosen. Common

transformations are described in 2.2. The parametrized objective function is

J [w] := D[T (y(w, x)),R(x)] + S(w). (3.2)

Instead of minimizing J over y, it is minimized over w, and S now acts on the parameters

w.

The motivation for parameterization is explained in the next section.

3.3.1 2D-2D Discretized Objective Function

We employ a discretize-then-optimize paradigm, discretizing before numerically minimiz-

ing the objective. Although each component of the objective can be chosen such that the

problem appears to be quadratic, the problem is actually highly non-linear – more de-

tails can be found in Section 3.12. This contrasts to an optimize-then-discretize paradigm
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where the problem is optimized analytically before the rest of the problem is computed

numerically. Examples employing an optimize-then-discretize approach include certain

registration problems solved using a partial differential equations (PDEs).

Discretizing Ω into m × n pixels, we can define a discretized grid [x1
k, x

2
k]k=1,...,mn

and call this x. Images R and T are approximated on the discrete grid to obtain cell-

centered discretizations R ≈ R(x) and T ≈ T (x), each with m×n pixels. The discretized

transformed coordinates are y ≈ y(w, x) where w = w, for consistency of notation, and

the transformed template image T [y] ≈ T (y). Furthermore, D and S represent the

discretized versions of D and S.

The discretized, parametrized objective function is

J [w] := D[T (y(w, x)), R(x)] + S(w), (3.3)

For ease of computation, the elements of w, y, R, and T are laid out into ordered

column vectors.

The motivation for parameterization is to reduce computational cost when performing

registration. Parameterization reduces the number of variables over which to minimize

the objective function. Without parameterization, the objective function is minimized

over y, which contains the same number of elements as the number of pixels in the

discretized image. With parametrization, the objective function is is minimized over w,

which is typically chosen to contain far less elements compared to y. For example, the

2D rigid-body and affine transformations can be parameterized by 3 and 6 variables,

respectively. The advantage is faster registration, but because parameterization restricts

y to a certain class of transformations, it is important to choose a model wisely.

3.4 Dissimilarity measures and derivatives (2D-2D)

Since the goal of registration here is to align the images by minimization of an objective

function, the dissimilarity measure plays a central role in how aligned two images are.
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The dissimilarity measure should be chosen to be small when the template and reference

images appear to be aligned or similar and large when they are not. The choice of

dissimilarity measure therefore depends on the type of images to be registered.

In the numerical minimization of J , most algorithms require the derivative with re-

spect to the variable over which J is minimized, and some require the second derivative

as well. The following are several common dissimilarity measures and their derivatives.

The derivative of each D[T,R] is computed with respect to the template image T , which

is needed during numerical optimization of the objective function.

3.4.1 Sum of Squared Distances

The sum of squared distances (SSD) measures differences in pixel values between two

images. Since this measure depends on crude image values, without extracting and using

any additional information, it works best on images of the same modality, i.e. images

taken with the same type of imaging equipment.

Continuous domain

In the continuous domain, the SSD is defined as

DSSD[T ,R] =
1

2

∫
Ω

(T (x)−R(x))2 dx. (3.4)

Discretized domain

In the discrete case, the SSD sums up the squared differences in individual pixel values

between the reference and template images. Because the sum depends on the level of

discretization, it is scaled by hd, the area of each pixel.

DSSD[T,R] =
1

2
hd ‖T −R‖2 =

1

2
hd

mn∑
i=1

(Ti −Ri)
2 (3.5)

An obvious example of a case where the SSD is not expected to measure alignment well

is one where the template image is a negative of the reference image, so the measured
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dissimilarity is large when the two images are perceived to be most aligned.

Derivative over the discretized domain

The dissimilarity measure D[T,R] can be written as ψ(r) (see p. 76 of [Mod09]). For

the SSD, define ri = Ti −Ri. Then the dissimilarity measure is

ψ(r) =
1

2
hd

mn∑
i=1

r2
i . (3.6)

To compute ∂ψ
∂T

, the derivative of the dissimilarity measure with respect to T , use the

chain rule:

∂ψ

∂T
=
∂ψ

∂r

∂r

∂T
. (3.7)

Because ∂ψ
∂ri

= hd ri,

∂ψ

∂r
= hd

(
∂ψ
∂r1

∂ψ
∂r2

. . . ∂ψ
∂rn

)
= hd

(
r1 r2 . . . rn

)
= hd rT . (3.8)

Note that ∂r
∂T

= I, the identity matrix. Putting the two terms together yields

∂ψ

∂T
= hd rT I = hd rT . (3.9)

Since ∂2ψ
∂r2i

= hd, second derivative of ψ with respect to r can be computed as

∂2ψ

∂r2
=



∂2ψ
∂r1 ∂r1

∂2ψ
∂r1 ∂r2

. . . ∂2ψ
∂r1 ∂rn

∂2ψ
∂r2 ∂r1

. . .

...
. . .

∂2ψ
∂rn ∂r1

∂2ψ
∂rn ∂rn


= hd I. (3.10)

3.4.2 Normalized Cross-Correlation

Continuous domain In the FAIR book, it is not documented how the approximation

used in the code for the derivative of the NCC distance measure is obtained. Although the

NCC was not used as a distance measure in our registration experiments, it is worthwhile

to present here an explanation for the approximation, as our codes are written as an add-

on to FAIR and allows the user flexibility in choosing a dissimilarity measure.
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A measure of similarity between T and R is 〈T ,R〉 =
∫

Ω
T (x)R(x) dx, known as

the cross-correlation. One would maximize the similarity when registering two images.

From that, we can define a measure of dissimilarity by normalizing 〈T ,R〉, squaring,

and subtracting from 1. (The negation of the normalized cross-correlation term converts

it into a minimization problem.)

Assuming that T and R are non-zero, content-less images so ‖T‖ 6= 0 and ‖R‖ 6= 0,

the normalized cross correlation distance measure (NCC) is defined to be

DNCC[T ,R] = 1−
(
〈T ,R〉
‖T ‖ ‖R‖

)2

= 1− 〈T ,R〉2

‖T ‖2 ‖R‖2
(3.11)

where

‖T ‖ =
√
〈T , T 〉. (3.12)

Discretized domain Discretization of the normalized cross-correlation dissimilarity

measure (NCC) is straightforward. The images T and R are each discretized into m×n

pixels, and each integral discretized into a sum, as was done in the discretization of the

SSD. Again, assuming that both T and R do not contain pixels all with values of 0 (so

the expression is always defined) and re-writing the distance measure as ψ,

ψ(T,R) = DNCC[T,R] = 1− (
∑mn

i=1 TiRi)
2

(
∑mn

i=1 T
2
i ) (
∑mn

i=1R
2
i )
. (3.13)

Derivative over the discretized domain Using the quotient rule and combining

terms, the derivative of the distance measure with respect to a pixel in T is

∂ψ

∂Tj
= −2Rj (

∑mn
i=1 TiRi) (

∑mn
i=1 T

2
i ) (
∑mn

i=1R
2
i )− 2Tj (

∑mn
i=1R

2
i ) (
∑mn

i=1 TiRi)
2

(
∑mn

i=1 T
2
i )

2
(
∑mn

i=1R
2
i )

2 (3.14)

= −2Rj 〈T,R〉 ‖T‖2
F‖R‖2

F − 2Tj‖R‖2
F 〈T,R〉

2

‖T‖4
F‖R‖4

F

(3.15)

= −2 〈T,R〉 ‖R‖2
F

‖T‖4
F‖R‖4

F

[
Rj‖T‖2

F − Tj 〈T,R〉
]

(3.16)

= − 2 〈T,R〉
‖T‖2

F‖R‖2
F

[
Rj −

〈T,R〉
‖T‖2

F

Tj

]
. (3.17)
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The Jacobian with respect to the entire image T is

∂ψ

∂T
= − 2 〈T,R〉
‖T‖2

F‖R‖2
F

[
RT − 〈T,R〉

‖T‖2
F

T T
]

(3.18)

=
2

‖R‖2
F

[
〈T,R〉2

‖T‖4
F

T T − 〈T,R〉
‖T‖2

F

RT

]
. (3.19)

The second derivatives can be found by taking derivatives in a similar manner. The

Hessian of ψ with respect to the elements of T is:

∂2ψ

∂T 2
=

∂

∂T

(
∂ψ

∂T

)
(3.20)

=



∂2ψ
∂T1 ∂T1

∂2ψ
∂T1 ∂T2

. . . ∂2ψ
∂T1 ∂Tmn

∂2ψ
∂T2 ∂T1

∂2ψ
∂T2 ∂T2

...
. . .

∂2ψ
∂Tmn ∂T1

∂2ψ
∂Tmn ∂Tmn


. (3.21)

Each entry of the Hessian matrix above can be found individually, i.e.

∂2ψ

∂Ti ∂Tj
=

∂

∂Ti

(
∂ψ

∂Tj

)
(3.22)

=
2

‖R‖2
F

∂

∂Ti

[
〈T,R〉2

‖T‖4
F

Tj −
〈T,R〉
‖T‖2

F

Rj

]
(3.23)

=
2

‖R‖2
F

[
∂

∂Ti

〈T,R〉2

‖T‖4
F

Tj −
∂

∂Ti

〈T,R〉
‖T‖2

F

Rj

]
(3.24)

=
2

‖R‖2
F

[
∂

∂Ti

(
∑mn

k=1 TkRk)
2
Tj

(
∑mn

k=1 T
2
k )

2 − ∂

∂Ti

(
∑mn

k=1 TkRk)Rj

(
∑mn

k=1 T
2
k )

]
(3.25)

def
=

2

‖R‖2
F

[
∂

∂Ti
A− ∂

∂Ti
B

]
. (3.26)

Each term in the brackets expands into a long expression, so we treat them separately
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and simplify as follows:

∂

∂Ti
A =

[
Ri 2 (

∑mn
k=1 TkRk)Tj + (

∑mn
k=1 TkRk)

2
(
∂Tj
∂Ti

)]
(
∑mn

k=1 T
2
k )

2

(
∑mn

k=1 T
2
k )

4 (3.27)

− (
∑mn

k=1 TkRk)
2
Tj [2Ti 2 (

∑mn
k=1 T

2
k )]

(
∑mn

k=1 T
2
k )

4 (3.28)

=

[
2 〈T,R〉TjRi + 〈T,R〉2 δij

]
‖T‖4

F − 4 ‖T‖2
F 〈T,R〉

2 TiTj

‖T‖8
F

(3.29)

=
2 〈T,R〉
‖T‖4

F

TjRi +
〈T,R〉2

‖T‖4
F

δij −
4 〈T,R〉2

‖T‖6
F

TiTj (3.30)

∂

∂Ti
B =

RiRj (
∑mn

k=1 T
2
k )− (

∑mn
k=1 TkRk)Rj 2Ti

(
∑mn

k=1 T
2
k )

2 (3.31)

=
1

‖T‖2
F

RiRj −
2 〈T,R〉
‖T‖4

F

TiRj. (3.32)

Substituting the simplified expressions back into Equation 3.26 and combining terms, we

obtain

∂2ψ

∂Ti ∂Tj
=

2

‖R‖2
F

[
2 〈T,R〉
‖T‖4

F

TjRi +
〈T,R〉2

‖T‖4
F

δij −
4 〈T,R〉2

‖T‖6
F

TiTj −
1

‖T‖2
F

RiRj +
2 〈T,R〉
‖T‖4

F

TiRj

]
(3.33)

=
2

‖R‖2
F‖T‖2

F

[
〈T,R〉2

‖T‖2
F

δij −
4 〈T,R〉2

‖T‖4
F

TiTj +
2 〈T,R〉
‖T‖2

F

TiRj +
2 〈T,R〉
‖T‖2

F

TjRi −RiRj

]
(3.34)

=
2

‖R‖2
F‖T‖2

F

[
〈T,R〉2

‖T‖2
F

δij +

(
−2 〈T,R〉
‖T‖2

F

Ti +Ri

)(
2 〈T,R〉
‖T‖2

F

Tj −Rj

)]
(3.35)

=
2

‖R‖2
F‖T‖2

F

[
〈T,R〉2

‖T‖2
F

δij −
(

2 〈T,R〉
‖T‖2

F

Ti −Ri

)(
2 〈T,R〉
‖T‖2

F

Tj −Rj

)]
(3.36)

=
2

‖R‖2
F‖T‖2

F

〈T,R〉2

‖T‖2
F

[
δij −

(
2

‖T‖F
Ti −

‖T‖F
〈T,R〉

Ri

)(
2

‖T‖F
Tj −

‖T‖F
〈T,R〉

Rj

)]
(3.37)

def
=

2 〈T,R〉2

‖R‖2
F‖T‖4

F

[δij + CD] , (3.38)

where

C = −
(

2

‖T‖F
Ti −

‖T‖F
〈T,R〉

Ri

)
, D =

(
2

‖T‖F
Tj −

‖T‖F
〈T,R〉

Rj

)
. (3.39)
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The expression for ∂2ψ
∂Ti ∂Tj

is long and going to be expensive to compute. Let us simplify

the expression by showing that |C| � 1 and |D| � 1 and then making approximations.

For all i,

Ti
‖T‖F

≤ ‖T‖∞
‖T‖F

(
‖T‖∞ = max

i
|Ti|
)

and Ri ≤ ‖R‖∞. (3.40)

Applying the triangle inequality to C,

|C| ≤
∣∣∣∣ 2Ti
‖T‖F

∣∣∣∣+

∣∣∣∣−‖T‖F Ri

〈T,R〉

∣∣∣∣ (3.41)

≤ 2 ‖T‖∞
‖T‖F

+
‖T‖F ‖R‖∞
〈T,R〉

(3.42)

≤ 2 ‖T‖∞
‖T‖F

+
‖T‖F ‖R‖∞
‖T‖F ‖R‖F

. (3.43)

Cancelling terms,

|C| ≤ 2 ‖T‖∞
‖T‖F

+
‖R‖∞
‖R‖F

. (3.44)

A similar argument applies to D.

For the images we will deal with, ‖T‖ 6= 0 and ‖R‖ 6= 0. Also, for natural images,

it is a reasonable assumption that ‖T‖∞ � ‖T‖F and ‖R‖∞ � ‖R‖F , so |C| � 1 and

|D| � 1.

Approximating Equation 3.38 with |C| � 1 and |D| � 1,

∂2ψ

∂Ti ∂Tj
≈ 2 〈T,R〉2

‖R‖2‖T‖4
δij (3.45)

∂2ψ

∂T 2
≈ 2 〈T,R〉2

‖R‖2‖T‖4
I. (3.46)

Apply the Holder inequality

‖fg‖1 ≤ ‖f‖p ‖g‖q, where
1

p
+

1

q
= 1 (and p, q ∈ [1,∞]) (3.47)

to T and R, and choose p, q = 2. Then

‖TR‖2
1 ≤ ‖R‖2

F ‖T‖2
F . (3.48)
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For T,R ≥ 0, i.e. T and R contain no negative pixels, 〈T,R〉 = ‖TR‖1. The inequality

becomes

〈T,R〉2 ≤ ‖R‖2
F ‖T‖2

F . (3.49)

Rearranging the expression,

〈T,R〉2

‖R‖2
F ‖T‖2

F

≤ 1. (3.50)

For T ≈ R (i.e. the pixel values in T are similar to the pixel values in R), the value

for the normalized cross correlation between T and R will be close to (but never greater

than) 1:

〈T,R〉2

‖T‖2
F‖R‖2

F

. 1. (3.51)

Multiplying both sides by 2
‖T‖2F

, we obtain an upper bound on part of the right side of

the expression in 3.46

2 〈T,R〉2

‖R‖2
F‖T‖4

F

≤ 2

‖T‖2
F

, (3.52)

and

∂2ψ

∂T 2
.

2

‖T‖2
F

I. (3.53)

To simplify and speed up computation, instead of computing the entries of ∂2ψ
∂T 2 in-

dividually as given in the expression in 3.37, we showed that the second derivative was

approximately equal to the expression in 3.46. Additionally, under the assumption that

the the images to be registered will appear similar (T ≈ R), 3.46 was further simplified

to 3.53. The right hand side of 3.53 is much less expensive to compute compared to the

original expression in 3.46 and can be used to approximate ∂2ψ
∂T 2 . This becomes significant

during the optimization process, where derivatives are computed at every iteration.

3.5 Derivatives of the 2D-2D Objective Function

Let us set aside discussion of regularizers for now to explore the rest of the steps in the

image registration process.
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3.5.1 Non-parametric Model

For a general non-parametrized objective function to be minimized over y, the derivative

is with respect to y:

∂J

∂y
=
∂ψ

∂y
+
∂S

∂y
(3.54)

=
∂ψ

∂T

∂T

∂y
+
∂S

∂y
(3.55)

by the chain rule.

∂ψ
∂T

depends on the choice of dissimilarity measure and has been derived for various

dissimilarity measures in Section 3.4. ∂T
∂y

depends on the input image T and is calculated

via finite differences. The derivative of the regularizer S, ∂S
∂y

, depends on how S is defined.

3.5.2 Parametric Model

If y is parametrized by w, then J will be minimized over w, and ∂J
∂w

is required instead

of ∂J
∂y

. By the chain rule again,

∂J

∂w
=
∂ψ

∂T

∂T

∂y

∂y

∂w
+
∂S

∂w
. (3.56)

Except for the addition of ∂y
∂w

, the rest of the terms are identical to the non-parametrized

case. ∂y
∂w

can easily be obtained as a function by analytically computing the derivative of

the transformation y, which is known.

3.6 Introduction to 2D-3D Registration

In registering two 2D images, an assumption is made about the objects represented by

the images that they both physically reside within the same plane. When T and R are

2D slice realizations of physical, 3D objects, such as MR images of the heart, 2D-2D

registration does not account for movements perpendicular to the plane of the image. In

clinical applications, the assumption does not hold in general because 2D-2D registration
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does not reflect the physical situation well, due to respiratory motion and as the patient

will be in different positions between pre-operative and intra-operative scans, neither of

which are limited to in-plane motions.

Although 2D-2D registration may return satisfactory transformation parameters where

motion perpendicular to the plane is estimated to be small, results may be non-physical

and difficult to evaluate without information in the third dimension.

In clinical applications of real-time MRI, a 2D image is taken as a slice of a 3D object.

In imaging short-axis slices of the heart, for example, a 2D cross section is taken of the

chest cavity. We want to simulate this in forming our 2D-3D registration model.

In this 2D-3D registration model, the template image remains 3D and the reference

image is 2D. At each iteration during registration, transformations are made on a 3D

image before a slice of it is compared to the 2D reference image. If registration is

successful, a transformation on the 3D template image is found such that the slice of it

is optimally aligned with the 2D reference image. Figures 3.2 and 3.3 illustrate.

(a) Reference image (orange) and ini-

tial template image (blue).

(b) The 2D projections of the heart

are initially misaligned.

Figure 3.2: Before registration

In 2D-2D registration, the template and reference images were both 2D, but in 2D-3D

registration, the template image T : Ω × Z ⊂ R3 → R is defined over the 3D domain

Ω×Z while the reference image R : Ω ⊂ R2 → R is defined over the 2D domain Ω, both
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(a) Reference image (orange) and

transformed template image (blue).

(b) The 2D projections of the heart

are aligned.

Figure 3.3: After 2D-3D registration

compactly supported.

3.7 2D-3D Objective Function

The goal is to find a transformation y : R3 → R3 on the set of 3D coordinates x ∈

Ω×Z ⊂ R3 such that a slice of the template image T taken at a location z is similar to

the reference image R. The objective function to be minimized is

J [y] := D[Lz(T (y(x))),R(x)] + S[y(x)]. (3.57)

Here, D is a measure of dissimilarity between two 2D images Lz(T (y(x))) and R

in the objective function above. S is a regularizer that imposes restrictions on the

transformation y.

One important piece that is not needed in 2D-2D or 3D-3D registration is the slicing

operator Lz : L2(Ω × Z) → L2(Ω) that extracts a 2D slice from a 3D volume. The

operator D can only take arguments of the same dimension. T and R are of different

dimensionalities, so the slicer reduces T to the same dimension as R. The slicer Lz

extracts a slice at location z ∈ Z ⊂ R such that Lz(T (x1, x2, x3)) := T (x1, x2, z) for

(x1, x2, x3) ∈ R3.
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3.7.1 2D-3D Parametrized Objective Function

As explained earlier, the transformation y can be parametrized via parameters w. Note

that y is a transformation on the template image, and therefore acts on 3D coordinates,

not 2D coordinates. The task is now to search for parameters w that minimize the

objective function

J [w] := D[Lz(T (y(w, x))),R(x)] + S(w). (3.58)

3.7.2 Multiple Solutions - 3D Affine Transformations

The objective function above applies in general for any parametric transformation on T .

For certain parameterizations, however, some parameters can be redundant due to the

reduction from 3 dimensions to 2 in taking a slice of the 3D template.

Here, we investigate the question: If y(w, x) is a 3D affine transformation (see Section

2.2), can different sets of parameters w yield the same Lz(T [y(w, x)])?

Theorem 1. Consider a given z. Any two affine transformations wA and wB that satisfy

the following conditions yield Lz(T [y(wA;x)])=Lz(T [y(wB;x)]).


wA1

wA5

wA9

 =


wB1

wB5

wB9

 ,


wA2

wA6

wA10

 =


wB2

wB6

wB10

 and


wA3 − wB3

wA7 − wB7

wA11 − wB11

 z +


wA4 − wB4

wA8 − wB8

wA12 − wB12

 =


0

0

0

 .

Proof. Note that for any given z and w

Lz[T [y(w;x)]] = Lz

T


w1 w2 w3

w5 w6 w7

w9 w10 w11



x1

x2

x3

+


w4

w8

w12





= T



w1 w2 w3

w5 w6 w7

w9 w10 w11



x1

x2

z

+


w4

w8

w12


 .
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Now consider wA and wB that for any x1, x2
wA1 wA2 wA3

wA5 wA6 wA7

wA9 wA10 wA11



x1

x2

z

+


wA4

wA8

wA12

 =


wB1 wB2 wB3

wB5 wB6 wB7

wB9 wB10 wB11



x1

x2

z

+


wB4

wB8

wB12

 .

Therefore for any x1, x2
wA1 − wB1

wA5 − wB1

wA9 − wB1

x1 +


wA2 − wB2

wA6 − wB6

wA10 − wB10

x2 = −



wA3 − wB3

wA7 − wB7

wA11 − wB11

 z +


wA4 − wB4

wA8 − wB8

wA12 − wB12


 .

Equating the right-hand-side and left-hand-side to zero completes the proof.

This suggests that if no restrictions are imposed on w, the first two columns of wA

and wB have to match. In addition, for any given third columns of wA and wB, a given

z, and a given fourth column of wA, we can always compute the fourth column of wB

that yields the same sliced result. This suggests that the number of parameters of w can

be reduced to 9 instead of 12 to obtain a unique solution.

Intuitively, this makes sense because w3 and w7 correspond to shearing along an xy-

plane, parallel to the slice taken by Lz, and w11 corresponds to scaling in the z-direction,

normal to the slice.

3.7.3 Discretized Objective Function

As stated earlier, to optimize the problem numerically, the problem first needs to be

discretized. This contrasts with the optimize-then-discretize paradigm, where the func-

tional is first optimized analytically before the rest of the calculations are performed

numerically for specific input images.

Discretizing Ω into m×n pixels and Z into l pixels, we can define xR and xT relating

to R and T , respectively, to be the discretizations of Ω and Ω × Z. The discretized,

transformed coordinates are y ≈ y(w, xT ) (where w = w), the discretized images are
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T ≈ T (xT ) and R ≈ R(xR), and discretization of the operators D and S are represented

by D and S.

Assuming the elements of T are laid out as a column vector in column-major ordering,

for a given z, the discretization of the operator Lz, denoted by Lz, can be computed as

Lz = Imn×mnl := Imn×mn ⊗
1×mnl size︷ ︸︸ ︷

[0, . . . , 0, 1︸︷︷︸
dmnl(z + ω)/ωe-th component

, 0, . . . , 0], (3.59)

where Z ∈ (−ω
2
,−ω

2
). Practically, to perform the operator on the 3D image in MATLAB,

the 3D image is reshaped into a 3D array, then sliced using an indexing operation.

The discretized problem is now to minimize

J [w] := D[Lz(T (y(w, x))), R(x)] + S(w). (3.60)

3.8 Dissimilarity Measures and Derivatives (2D-3D)

In the 2D-2D case or the 3D-3D case, dissimilarity measures were applied to two images

that were the same dimension, i.e. T and R were both 2D or both 3D. In slice-to-volume

2D-3D registration, we are no longer interested in comparing T to R, but rather L to

R, where L denotes the image Lz(T ), which is a slice of T taken at location z. When

measuring the dissimilarity, D[L,R] is computed instead of D[T,R], but the definitions

for each of the dissimilarity measures listed in subsection 3.4 remain the same.

3.9 Regularizers

The registration problem is not guaranteed to have a unique solution. For implementation

in image-guided surgery, where a 2D image obtained in live time is registered to a 3D

image obtained prior to surgery, a question that arises is - if an infinite number of

transformations produce the same registered, end-result image, which transformation

should be chosen?
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Given information about the problem, however, we can choose a regularizer to penalize

unlikely or improbable transformations. Earlier, we found that in affine 2D-3D registra-

tion, the parameters w needed to obtain identical slices L were not unique. Without

regularizing w, the affine 2D-3D registration problem is ill-posed. To yield a unique w,

we require a regularization functional S independent of the input images, for example,

S[w − wref] :=
1

2
× (w − wref)T M (w − wref), (3.61)

where M is a symmetric positive definite weight matrix that acts as a regularizer.

The regularizer above penalizes the value of w − wref, so we can choose a set of

transformation parameters wref we do not want w to stray too far from, chosen using

what is known about the system.

In practice, since we typically have information about wref, we can simply impose

regularization to restrict w instead of reducing the number of parameters in the affine

transformation to yield a unique w.

3.10 Derivatives of the 2D-3D Objective Function

The derivative of the objective function with respect to the parameters over which it

is minimized is needed for most optimization algorithms, and some require the second

derivative as well.

For a non-parametrized objective function minimized over the coordinates y, by the

chain rule,

∂J

∂y
=
∂ψ

∂y
+
∂S

∂y
(3.62)

=
∂ψ

∂L

∂L

∂T

∂T

∂y
+
∂S

∂y
. (3.63)

∂ψ
∂L

, the derivative of the dissimilarity measure with respect to a 2D image, is known from

the definition of the dissimilarity measure. Since L = Lz(T ) = Imn×mnl T , ∂L
∂T

= Imn×mnl.
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∂T
∂y

depends on the image T and is calculated via finite differences. ∂S
∂y

is also known from

the definition of S.

If y is parametrized by w, J is minimized over w, and

∂J

∂w
=
∂ψ

∂L

∂L

∂T

∂T

∂y

∂y

∂w
+
∂S

∂y

∂y

∂w
. (3.64)

∂y
∂w

can be obtained analytically by computing the derivative of the transformation y,

which is known [Mod09].

Recall that ψ can be written as ψ(r(w)). A common approximation for the Hessian

of a function ψ(r(w)) obtained using chain rules and Taylor series expansions is

Hψ ≈
(
∂r

∂w

)T (
∂2ψ

∂r2

)(
∂r

∂w

)
. (3.65)

The Hessian of J , denoted by HJ is

HJ = Hψ +HS ≈
(
∂r

∂w

)T (
∂2ψ

∂r2

)(
∂r

∂w

)
+HS, (3.66)

if we assume the regularizer described previously.

Using 3D affine registration with the SSD dissimilarity measure as an example, after

putting it all together, the derivatives are

∂J

∂w
=
∂ψ

∂r

∂r

∂L

∂L

∂T

∂T

∂y

∂y

∂w
+
∂S

∂y

∂y

∂w
(3.67)

= hd rT × Imn × Imn×mnl × dT × dy + (w− wref)T M, (3.68)

where we have assumed the regularizer described earlier and used dT := ∂T
∂y

, dy := ∂y
∂w

,

and w is a 12× 1 vector of parameters w1, w2, . . . , w12. The Hessian is

HJ ≈ drTdr + M, (3.69)

using dr = ∂r
∂w

.

During computation, 0th-order variables (i.e. not derivatives) are ordered lexicograph-

ically into vectors. Their derivatives (Jacobians and Hessians) are matrices for obvious

reasons. Table 3.1 summarizes the sizes of each variable used during computation.
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Variable Size

R,L, r mn× 1

T mnl × 1

xR 2mn× 1

xT , y 3mnl × 1

w, wref p× 1

S, J, ψ 1× 1

dT mnl × 3mnl

dy 3mnl × p

dr mn× p

dJ, dS 1× p

HJ , HS,M p× p

Table 3.1: Sizes of discrete variables during computation. 2D or 3D arrays are laid out

lexicographically. p is the number of parameters in the parametric tranformation.
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3.11 Optimizers

The last step is to numerically optimize the objective function.

The gradient descent and Gauss-Newton methods (Algorithms 1 and 2) are two com-

mon algorithms for minimizing a function. They are straightforward and simple to use,

but the gradient descent method can be quite inefficient and the Gauss-Newton method

requires second derivatives. For problems where the Hessian is unavailable or too ex-

pensive to compute, other optimization schemes, such as Quasi-Newton methods, can be

chosen that do not require the Hessian [NW06].

Algorithm 1 Minimizing J [w] using the Gradient (Steepest) Descent Approach

Initialize

[
w

]
←
[
w0

]
.

while not converged do

Evaluate dJ at [w].

Solve the descent direction from the linear equation δw = −dJT .

Find a positive scalar step-size s using a line-search scheme.

Update

[
w

]
←
[
w

]
+ s

[
δw

]
.

end while

Algorithm 2 Minimizing J [w] using the Gauss-Newton Approach

Initialize

[
w

]
←
[
w0

]
.

while not converged do

Evaluate HJ and dJ at [w].

Solve the descent direction from the linear equation HJ

[
δw

]
= −dJT .

Find a positive scalar step-size s using a line-search scheme.

Update

[
w

]
←
[
w

]
+ s

[
δw

]
.

end while
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3.12 Interpolation

Since the registration problem is a discretized one, interpolation is needed to compute

the discrete transformed coordinates and the transformed template image.

T (x) is well-defined, but for a given w, y(w, x) likely will not coincide with gridpoints

of x. Thus, T (y(w, x)) is technically not defined. An interpolation step is necessary to

compute the transformed template image over the discrete domain. T (y(w, x)) was used

previously with the implication of an interpolation step, so technically, we were referring

T (P · y(w, x)) where P is an interpolant.

Since P depends on y and changes with every iteration of the optimizer, the registra-

tion problem is a highly non-linear one and a closed-form solution can not be found. For

this reason we must numerically optimize the problem to find a solution.

For simplicity, a linear interpolator will be used for registration experiments presented

in this thesis.

3.13 Multi-Level Framework

It is apparent that the minimization problem depends on how the problem is discretized.

Solving the coarsely discretized problem is computationally inexpensive, but at the ex-

pense of large errors as information is lost. On the other hand, a fine-grained discretiza-

tion of the problem may produce more precise results, but may also more easily be

trapped in local minima.

Let us consider different discrete representations of the image registration problem and

address the discrete problems sequentially in the so-called multi-level approach. Starting

with the coarsest level, a solution is computed, which then serves as a starting point for

the next finer discretization.

There are several advantages to this. It is efficient since most of the work is done

at the computationally inexpensive coarse representations, and only small adjustments
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are required at the more costly fine representations. Small variations in intensity present

in the full-resolution image do not appear in coarse discretizations, so the optimizer is

less likely to be trapped in local minima. It also adds additional regularization by giving

more weight to more important, large-scale structure.

An objective function is optimized at each discretization level, preserving the opti-

mization character of the problem and allowing the use of established schemes for line

searches and stopping.
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(a) [8, 8] (b) [16, 16]

(c) [32, 32] (d) [64, 64]

(e) [128, 128] (f) [256, 256]

Figure 3.4: An image at coarse to fine levels of discretization.
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Experiments and Results

4.1 Data

3D pre-procedural and 2D real-time cardiac MRI were acquired from 6 volunteers using

a 1.5T MRI scanner (GE Signa Excite, GE Healthcare, Waukesha, WI).

4.1.1 3D Prior (Cine) Images:

Each pre-procedural 3D volume consists of a stack of 12 to 14 short-axis (SAX) slices

of the heart with a resolution of 1.37 × 1.37 × 8 mm3 and a field of view (FOV) of

350 × 350 mm2 (i.e. 256 × 256 pixels) for each slice. The images were acquired at end-

expiration breath-hold with an electrocardiogram (ECG) triggered GE FIESTA pulse

sequence.

ECG triggering works by measuring the amount of time that has passed since the last

R-peak of the cardiac cycle, called the trigger time, and capturing images at specified

trigger times. Images in this dataset were acquired for 20 phases – 20 trigger times

equally spaced in time.

It should be noted that these 3D images are not true 3D volumes but, rather, conven-

tional, clinically-used multi-slice acquisitions. Instead of acquiring an entire 3D volume at

38
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(a) A high-resolution ‘cine’ MR image. (b) A noisy, ‘real-time’ MR image.

Figure 4.1: Examples of pre-operative and intra-operative short axis MR images of the

heart. If the long axis runs from the apex of the heart to the base, a short axis slice images

a cross-section of the heart perpendicular to the long axis. The light-coloured circular

region near the centre of each image is the left ventricle (LV) and the light-coloured

region immediately to its left is the right ventricle (RV).

a single temporal point, a 3D volume is formed by acquiring multiple 2D slices through

multiple cardiac cycles, and then piecing together slices acquired at the same cardiac

phase. More details can be found in [PGR15].

An example of a cine image is shown in Figure 4.1a.

4.1.2 2D Real-Time Images:

2D real-time images were aquired at the same slice locations as in the pre-procedural

scans, but under free-breathing conditions. The images were obtained with a fast spi-

ral balanced steady state free precession sequence with an in-plane resolution of 2.2 ×

2.2 mm2, slice thickness 8 mm, and a FOV of 350× 350 mm2 (i.e. 158× 158 pixels).

Image capture was not triggered as in the cine images. Instead, images at each slice
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location were continuously acquired at a frame rate of 8 frames per second (fps) and

ECG-gated to record the time passed since the last R-peak. There is no synchronization

between different slices, either, so image stacks do not produce meaningful volumes.

An example of a real-time image is shown in Figure 4.1b.

4.2 Validation of Results

If registration is successful, a slice obtained from transforming the 3D template image

with the transformation parameters obtained from registration and then slicing at a

predetermined slice location would yield a 2D image similar to the 2D reference image.

In general, registration of two images taken at different times is an ill-posed probem.

While ‘eyeballing’ the end-result images can give us a subjective impression of whether

registration was successful, no ‘ground truth’ is available and we therefore have no way

of quantitatively measuring the errors on the transformation parameters.

We can, however, validate the end-result images for its purpose in application. The

images in question are cardiac MRI, where the region of interest is the left ventricle (LV).

The LV is fairly circular, so landmarks within the LV, such as the papillary muscles, can

act as reference points.

One way of measuring how well images have been aligned by registration is to mea-

sure how much the LVs in the template and reference images overlap before and after

registration. The Dice coefficient and Jaccard index (also known as the Jaccard similarity

coefficient) are two ways of quantifying the overlap between two regions and are defined

as:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

and Dice(A,B) =
2|A ∩B|
|A|+ |B|

. (4.1)

To compute these values for our data, the LV is segmented to produce a binary map.

Each pair of vertical bars in the definitions above indicate a count of the number of pixels

satisfying the criteria between the 2 bars. Both functions return values of 0 when regions
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A and B do not overlap, and return values of 1 when A and B overlap perfectly.

We can also measure how well landmarks in the LV align by measuring how far

landmarks in the template image are from the landmarks in the reference image, before

and after registration, assuming the spatial location of the image slices are known. This

quantity, called the target registration error (TRE), is the l2-normed distance between

landmarks in the template image and the corresponding landmarks in the reference image.

Landmark locations are known for un-transformed template images and real-time

reference images, so the TRE before registration is computed by |xT − xR|2, where xT

and xR refer to the coordinates of the landmark locations in the template and reference

images, respectively. To compute the location of the same points in the transformed

template images, the inverse transformation is applied to the coordinates in the un-

transformed images, so the location of the transformed coordinates after registration is

y−1(xT ) and the TRE after registration is computed by |y−1(xT ) − xR|2. In controlled

test experiments where the reference image is a sliced of a transformed version of the

template image, the transformation yinit is known, so xR = y−1
init(xT ), and the TRE before

registration is |xT − y−1
init(xT )|2.

The LV and landmarks in the LV were manually segmented and pinpointed in the

cine image volume. The endocardium of the LV was outlined for each slice, and the

in-plane segmentations stacked to form a 3D segmentation mask. To obtain a 2D seg-

mentation mask of L after registration, the 3D segmentation mask is transformed using

the parameters obtained from registration, and then sliced at location z.

For the real-time images, the LV and landmarks were also segmented, by an expert.

The coordinates for the landmarks in the image are 2D, but knowing the location where

the slice was taken from allows us to append an approximate third coordinate to the

landmarks.
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4.3 Cine/cine Controlled Experiments – Rigid Ini-

tial Transformation

We set out to develop a mathematical model for 2D-3D registration and to test the model

on cardiac MR images, with applications to image-guided procedures.

We were particularly interested in using an affine parametric model in registering

images of the heart. Because the heart is a highly mobile organ, we hypothesized that an

affine model better accounts for the deformable nature of the heart than a rigid model.

The rigid model is often employed for its simplicity and speed, as opposed to an entirely

deformable model, but an affine model only doubles the number of parameters from 6 to

12 and should not consume much more resources than the rigid model.

Before testing the affine model on registration between a cine image and a real-time

image, we first perform controlled experiments to gauge how well the model works. In

these controlled experiments, the 2D reference image was taken to be a slice of the 3D

cine volume that was transformed with known transformation parameters. To maintain

a fair comparison between rigid and affine registration, the initial transformation applied

to the 3D cine volume to obtain the reference image was a rigid one, with 6 parameters.

Registration was then performed starting with the original 3D cine volume as the tem-

plate image. If registration is successful, the parameters returned should account for the

initial transformation and the resultant images should match up perfectly. Rigid regis-

tration should return transformation parameters identical or close to the known initial

transformation parameters. Due to Theorem 1, it is possible for affine registration to

return parameters that do not correspond to the initial transformation.

For affine registration, let us choose a positive definite 12×12 diagonal regularizer M

with unit entries on the main diagonal except for locations 3, 7, and 11 where entries are

106, i.e. large. By restricting the three terms to values close to the corresponding entries

of wref, the regularizer practically limits the number of parameters in the affine transfor-



Chapter 4. Experiments and Results 43

mation to 9 terms, returning a unique set of transformation parameters. For example,

if wref is chosen to be the identity transformation, the regularizer ensures parameters

[w3, w7, w11] returned from registration are close to [0, 0, 1].

We perform these experiments because they have some form of a ‘ground truth’

available. Because the initial transformation made to obtain R is known, we know what

the parameters returned by rigid registration should be. Also, because the reference

image was taken from the same source as the template image, the difference between L

and R after registration should be perfectly aligned and difference between corresponding

pixels close to zero. Visually, a perfectly aligned image after registration corresponds to

a flat difference image – the image obtained by subtracting the R from the transformed

L. One way to objectively measure this is to measure the variance of the pixel values in

the difference image. Another way is to evaluate the Frobenius norm of the difference

image, summing up the squared pixel value differences in the entire image. However,

since the Frobenius norm depends on image content (image pixel values), there is no

absolute threshold under which the norm of the difference image is considered small or

over which the norm is considered large. One can consider the relative change in the

norm of the difference image before and after registration in deciding whether the norm

after registration is considered ‘close’ to zero, but the problem of choosing a threshold

remains – what relative change is considered ‘good enough’? And how reliably and how

well does a reduction of the norm indicate that images are being aligned?

In clinical situations, where the relation between the reference and template image

will not be precisely known (for example, the subject has moved) or where the image

acquisition differs between the reference and the template image, none of the methods

outlined in the previous paragraph reliably evaluate how well the images have aligned.

What we will be looking for in the registration of two images obtained in a clinical

setting (Section 3.3b) is how well the features represented in the images have aligned,

by measuring LV overlap (quantified by the Jaccard and Dice indices) and by measuring
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the distance between landmarks in the template and reference image (quantified by the

TRE). For consistency, the same methods used in evaluating the results of registration

on clinical data will be used in control experiments as well.

For all experiments following, it will be assumed that Ω = (−175, 175)× (−175, 175)

mm2, Z = (−48, 48) mm, m = n = 128, and l = 12. The Gauss-Newton algorithm

seemed sufficient in registering the images in our data set and more robust than the

Gradient Descent algorithm, so we will use the Gauss-Newton approach with an Armijo

line search scheme [NW06].

Figures 4.2 and 4.3 show an example of a control experiment where reference image

was a slice of the rigid-transformed 3D cine volume with arbitrarily chosen parameters

(except the last entry) w = [−0.1, 0.05, π/16, 50,−5, 32]. Slicing operations were applied

at z = −36 mm. The last entry of w, the z-direction component of translation, was chosen

so that landmarks would be reasonably close to the location of the slicing operator after

successful registration and the papillary muscles would be visible in the end-result images.

It would also reduce z-direction (normal to the plane of an image slice) uncertainty so

the TRE would be a reasonable indicator of whether registration was successful. Both

rigid and affine registration performed well in this case. Values for the Jaccard, Dice,

and TRE measures before and after rigid and affine registration are shown in Table 4.1.

Multiple controlled cine-cine registration were performed on pairs of images where the

reference image was a slice of the transformed template image, as described above. For a

range of 1715 different initial transformations performed to obtain the reference image,

rigid and affine registrations were performed on 6 data sets to compare their differences.

The 1715 initial transformations consisted of combinations of 7 translations ranging from

-24mm to 24mm in all three Cartesian directions and 5 rotations along the z-axis between

− π
16

and π
16

.

For each of the 6 data sets available, affine and rigid registration was performed

for the 1715 reference images obtained from various initial parameters described above.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4.2: Results of rigid registration between a 3D image and a 2D cine image in a

controlled experiment. (a) Reference image R. (b),(c) Template slice L before and after

registration. (d),(e) Difference between the reference image and template slice (L − R)

before and after registration. (f),(g) Segmentation masks showing left ventricle overlap

before and after registration, with out-of-plane reference image landmarks projected onto

image (×) and in-plane template image landmarks (+).
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4.3: Results of affine registration between a 3D image and a 2D cine image in a

controlled experiment.

(a) Reference image R. (b),(c) Template slice L before and after registration. (d),(e)

Difference between the reference image and template slice (L − R) before and after

registration. (f),(g) Segmentation masks showing left ventricle overlap before and after

registration, with out-of-plane reference image landmarks projected onto image (×) and

in-plane template image landmarks (+).
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Jaccard Dice TRE (mm)

Before registration 0.03 0.06 57.1 ± 1.8

After rigid registration 1.00 1.00 0.02 ± 0.01

After affine registration 1.00 1.00 0.10 ± 0.08

Table 4.1: Jaccard indices and Dice coefficients of left ventricle overlap before and after

registration in a controlled experiment where the template image is a 3D cine volume

and the reference image is a slice of the same cine volume transformed (rigid-body) with

known parameters.

Registration was performed on a 64-bit Lenovo S30 ThinkStation with a 3.7 GHz Intel

Xeon E5-1620 v2 processor. The average (of 1715) parametric registration time for a

single rigid registration ranged from 36 seconds to 55 seconds between 6 data sets. For

affine registration, it ranged between 49 seconds to 71 seconds, .

We found that although the affine model registered images correctly in more regis-

tration experiments than the rigid model, there were also cases where the rigid model

registered the images successfully while the affine model did not. However, those tended

to be isolated cases, where if the the initial transformation parameters were adjusted

slightly, changing the initial misalignment between the template and the reference im-

ages by a little, rigid registration would fail. It was observed that, when each of the initial

transformation parameters in winit were incremented across a range of values, the affine

model tended to perform more consistently compared to the rigid model and register

images successfully for a broader range of initial misalignment.

Figures 4.4 to 4.9 show results of all 1715 registrations performed on Data Set 1.

Figure 4.4 shows the amount of LV overlap before registration, plotted against the

initial translation distance – the total Euclidian (l2-normed) distance the reference image

R is in relation to the initial template image T . These include instances in which the
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Figure 4.4: LV overlap as a function of initial translation distance before registration to

a reference image obtained by an initial rigid transformation, Data Set 1.
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Figure 4.5: LV overlap as a function of initial translation distance after rigid registration

to a reference image obtained by an initial rigid transformation, Data Set 1.

initial transformation involved a rotation as well, so an initial translation of 0 can corre-

spond to a Jaccard index of less than 1 before registration. Whiskers mark the locations

of the 10th and 90th percentiles (of 1715 registrations), the box represents the 25th-75th

percentile, and the line in the box marks the median. As expected, as initial translation

distances increases, alignment and therefore the amount of LV overlap decreases. Figure

4.5 and 4.6 show the amount of LV overlap after rigid and affine registration, respec-

tively. Both rigid and affine registrations improve LV overlap, but affine registration

appears to show more improvement over rigid registration for initial misalignments due

to translation for a broader range of distances.

As mentioned earlier, the Jaccard index here quantifies the overlap between projec-
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Figure 4.6: LV overlap as a function of initial translation distance after affine registration

to a reference image obtained by an initial rigid transformation, Data Set 1.

tions of the LV. The Jaccard index is only a reliable indicator of good alignment if the

physical slice location of the registered template slice is close to that of the reference.

The TRE measures landmark distances between the template and reference images, so

an indicator of good alignment would be simultaneously small TRE values and large

Jaccard indices. Figures 4.7, 4.8, and 4.9 show the TRE before registration, after rigid

registration, and after affine registration, respectively. As expected, before registration,

the TRE varies directly with the initial translation distance. Both rigid registration and

affine registration appear to improve results, but affine registration appears to reduce the

TRE more compared to rigid registration.

As stated previously, each box (and its whiskers) summarizes a collection of points,

each point indicating 1 of 1715 registration experiments with a different initial misalign-

ment. For a given initial translation distance, the translations are in various directions

and with varying degrees of rotation, so it is possible for a set of parameters with a

translation of 0mm to produce a non-zero TRE before registration, due to rotation.

The same was done for other data sets as well; collective results are shown in Figures

4.10 to 4.15. Only the medians are shown. When initial translation distance is large,

results are more varied – some TREs remain large, meaning affine and rigid registration

did not improve results, which is expected because the algorithm may not find a solution
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Figure 4.7: Target registration error (TRE) as a function of initial translation distance

before registration to a reference image obtained by an initial rigid transformation, Data

Set 1.
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Figure 4.8: Target registration error (TRE) as a function of initial translation distance

after rigid registration to a reference image obtained by an initial rigid transformation,

Data Set 1.
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Figure 4.9: Target registration error (TRE) as a function of initial translation distance

after affine registration to a reference image obtained by an initial rigid transformation,

Data Set 1.
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Figure 4.10: LV overlap as a function of initial translation distance before registration to

a reference image obtained by an initial rigid transformation, all data sets.

more optimal than a solution near the initial state when the images are far apart to begin

with. Similarly, the LV overlap as quantified by the Jaccard index is improved by both

rigid and affine registration, and it appears that affine registration improves LV overlap

more than rigid registration, but since the limited number of data sets is limited, we can

say that the affine model is comparable to the rigid model.

The same data was analysed, but in relation to the amount of rotation made in the

initial transformation to obtain the reference image R. The results are shown in Figures

4.16 to 4.21.

Since affine registration worked more consistently compared to rigid registration and
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Figure 4.11: LV overlap as a function of initial translation distance after rigid registration

to a reference image obtained by an initial rigid transformation, all data sets.
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Figure 4.12: LV overlap as a function of initial translation distance after affine registration

to a reference image obtained by an initial rigid transformation, all data sets.
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Figure 4.13: Target registration error (TRE) as a function of initial translation distance

before registration to a reference image obtained by an initial rigid transformation, all

data sets.
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Figure 4.14: Target registration error (TRE) as a function of initial translation distance

after rigid registration to a reference image obtained by an initial rigid transformation,

all data sets.
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Figure 4.15: Target registration error (TRE) as a function of initial translation distance

after affine registration to a reference image obtained by an initial rigid transformation,

all data sets.
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Figure 4.16: LV overlap as a function of initial rotation angle before registration to a

reference image obtained by an initial rigid transformation, all data sets.
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Figure 4.17: LV overlap as a function of initial rotation angle after rigid registration to

a reference image obtained by an initial rigid transformation, all data sets. Note the

change in scale of the vertical axis.
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Figure 4.18: LV overlap as a function of initial rotation angle after affine registration

to a reference image obtained by an initial rigid transformation, all data sets. Note the

change in scale of the vertical axis.
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Figure 4.19: Target registration error (TRE) as a function of initial rotation angle before

registration to a reference image obtained by an initial rigid transformation, all data sets.
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Figure 4.20: Target registration error (TRE) as a function of initial rotation angle after

rigid registration to a reference image obtained by an initial rigid transformation, all data

sets. Note the change in scale of the vertical axis.
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Figure 4.21: Target registration error (TRE) as a function of initial rotation angle after

affine registration to a reference image obtained by an initial rigid transformation, all

data sets. Note the change in scale of the vertical axis.
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performed better for a wider range of initial transformation parameters, it suggests that

it is more robust compared to the rigid model, albeit slower.

4.4 Cine/cine Experiments – Affine Initial Transfor-

mation

In the previous section, control experiments were done where the initial transformation

applied to obtain the reference image was a rigid one. Recall that the motivation behind

using an affine model as opposed to a rigid was to more accurately represent the de-

formable nature of organs in the body. To demonstrate that the rigid model does indeed

fail when the nature of the deformation applied to the reference imageR is not rigid, we in-

dividually perturbed each entry of the identity transform w = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0],

and applied the perturbed set of parameters in the initial transformation to obtain R.

For each R that was obtained, rigid and affine registration was performed and results

evaluated. Due to Theorem 1, perturbing entries w3, w7, and w11 is equivalent (in terms

of producing the same template image slice) to perturbing w4, w8, and w12 but scaled

by a factor of z, the location of the slicing operator, so only 9 entries of w need to be

perturbed; w4, w8, and w12 were not perturbed. For each of the 9 entries, an ε between

-0.5 to 0.5 was added to the entry to produce a set of initial parameters used to obtain

R.

Figures 4.22, 4.23, and 4.24 show the effects of perturbing the entries of w2 on LV

overlap before registration, after rigid registration, and after affine registration. As ex-

pected, affine registration improves results over rigid registration. Similar results found

for entries w1, w5, w6, w9, and w10, but for the sake of brevity, no figures will be shown

for those entries.

Figures 4.25, 4.26, and 4.27 show the effects of perturbing the entries of w3 on LV

overlap before registration, after rigid registration, and after affine registration. Due to
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Figure 4.22: LV overlap as a function of the perturbation on w2 before registration for

all data sets. Reference image obtained by an affine transformation that is the identity

transformation except for the addition of the perturbation to w2.
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Figure 4.23: LV overlap as a function of the perturbation on w2 after rigid registration for

all data sets. Reference image obtained by an affine transformation that is the identity

transformation except for the addition of the perturbation to w2.

Theorem 1, perturbations in w3, w7, and w11 can be compensated for during registration

by changing the values of w4, w8, and w12, which are translation parameters and therefore

a rigid transformation. Rigid registration was therefore comparable to affine transforma-

tion for perturbations on w3, as seen in Figures 4.26 and 4.27. The same was found for

entries w7 and w11, but for the sake of brevity, no figures will be shown for those entries.

Recall that an indicator of good alignment is a simultaneously large Jaccard index

and small TRE. Figures 4.28 to 4.33 show the effects of perturbation on w2 and w3 on the

TRE before registration, after rigid registration, and after affine registration. Consistent



Chapter 4. Experiments and Results 59

Size of perturbation
                    

Ja
cc

ar
d

0.5

0.6

0.7

0.8

0.9

1

-0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50

Figure 4.24: LV overlap as a function of the perturbation on w2 after affine registration

for all data sets. Reference image obtained by an affine transformation that is the identity

transformation except for the addition of the perturbation to w2.
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Figure 4.25: LV overlap as a function of the perturbation on w3 before registration for

all data sets. Reference image obtained by an affine transformation that is the identity

transformation except for the addition of the perturbation to w3.
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Figure 4.26: LV overlap as a function of the perturbation on w3 after rigid registration for

all data sets. Reference image obtained by an affine transformation that is the identity

transformation except for the addition of the perturbation to w3.
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Figure 4.27: LV overlap as a function of the perturbation on w3 after affine registration

for all data sets. Reference image obtained by an affine transformation that is the identity

transformation except for the addition of the perturbation to w3.
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Figure 4.28: The TRE as a function of the perturbation on w2 before registration for

all data sets. Reference image obtained by an affine transformation that is the identity

transformation except for the addition of the perturbation to w2.
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Figure 4.29: The TRE as a function of the perturbation on w2 after rigid registration for

all data sets. Reference image obtained by an affine transformation that is the identity

transformation except for the addition of the perturbation to w2.

with the previous paragraph, it was also found that perturbing the entries of w2 produced

results similar to those obtained by perturbing the entries of w1, w5, w6, w9, and w10, and

perturbing the entries of w3 produced results similar to those obtained by perturbing the

entries of w7 and w11.

For perturbations on w2 (and w1, w5, w6, w9,, w10), affine registration generally did

well, increasing Jaccard indices and reducing TREs. Rigid registration did not improve

results; Jaccard indices after rigid registration became more varied and generally appear

to worsen.
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Figure 4.30: The TRE as a function of the perturbation on w2 after affine registration for

all data sets. Reference image obtained by an affine transformation that is the identity

transformation except for the addition of the perturbation to w2.
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Figure 4.31: The TRE as a function of the perturbation on w3 before registration for

all data sets. Reference image obtained by an affine transformation that is the identity

transformation except for the addition of the perturbation to w3.
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Figure 4.32: The TRE as a function of the perturbation on w3 after rigid registration for

all data sets. Reference image obtained by an affine transformation that is the identity

transformation except for the addition of the perturbation to w3.
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Figure 4.33: The TRE as a function of the perturbation on w3 after affine registration for

all data sets. Reference image obtained by an affine transformation that is the identity

transformation except for the addition of the perturbation to w3.
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For perturbations on w3 (and w7, w11), the results of rigid registration were com-

parable to affine registration. This can be explained by Theorem 1, which states that

variations in w3, w7, and w11 can be compensated for by changing the values of w4, w8,

and w12 to obtain the same 2D slice of a 3D volume. Since w4, w8, and w12 are translation

parametres in the x-, y-, and z-directions, respectively, and translation is allowed in rigid

transformations, rigid registration was able to compensate for perturbations on w3 (and

w7, w11) and produce results similar to that of affine registration.

4.5 Real-time/Cine Experiments

After we are satisfied that the model works for controlled test cases, we would like to

test the model on clinical data.

There is no initial 3D transformation applied to obtain the reference image as was done

on the test cases, since the reference images here are 2D real-time images. It is also not

meaningful to perform a 2D transformation on a real-time image to obtain the reference

image for registration, since a modified image no longer represents an actual clinical

situation. Because the slice locations in the real-time and cine cardiac MRI are already

rather aligned initially in the z-direction, registration between images from same the slice

prescription would align things mostly within the xy-plane, and give little indication of

how well the algorithm works when the images are taken at different slice locations.

Performing registration between different slices would be a better indicator of how well

the algorithm improves alignment in the z-direction. For the following example (Figures

4.34 and 4.35), the real-time slice was taken at spatial location z = −4 mm while the

slicing operation was applied on the template image at z = −36 mm, so the initial slice of

the 3D template is at z = −36 mm. To register the images successfully, the registration

algorithm must return transformation parameters that translate the template image by

approximately 32 mm (the physical distance between the spatial locations of the reference
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Jaccard Dice TRE (mm)

Before registration 0.67 0.80 32.8 ± 0.2

After rigid registration 0.71 0.83 6.6 ± 0.8

After affine registration 0.87 0.93 4.5 ± 0.1

Table 4.2: Jaccard indices and Dice coefficients of left ventricle overlap before and after

registration in an experiment where the template image is a 3D cine volume and the

reference image is a real-time image at z = −4 mm. Slicing operations performed at

z = −36 mm.

image and slicing operator) in the z-direction, along with appropriate alignments in the

x- and y-directions.

Figures 4.34 and 4.35 and Table 4.2 show the results of an experiment. The affine

model appears to produce slightly better results for this experiment, due to its ability to

deform, apparent in the LV overlap after rigid and affine registration (Figures 4.34g and

4.35g).

In most clinical applications, initial misalignment will not be as large and the two

images registered will be slices in close proximity to one another. Affine and rigid reg-

istration was performed on real-time images from 6 data sets, each contributing 1 cine

image and between 17 to 29 real-time images, to a total of 143 real-time images between

6 data sets. Each real-time image was registered to a cine image of the same volunteer at

the same slice location and cardiac phase. Although the slice prescriptions are identical,

there may be small motion normal to the image plane. The results are listed in Table

4.3.

With the exception of Data Set 3 and Data Set 5, rigid registration improves or leaves

results unchanged. Affine registration improves results for all data sets except Data Set

3. For Data Set 3, rigid registration returned values worse than what was initially given
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4.34: Results of rigid registration between a 3D cine image and a 2D real-time

image on the same subject as in the controlled experiment, with an initial misalignment of

approximately 32mm in the z-direction (through the image plane). (a) Reference image

R. (b),(c) Template slice L before and after registration. (d),(e) Difference between

the reference image and template slice (L − R) before and after registration. (f),(g)

Segmentation masks showing left ventricle overlap before and registration, with in-plane

reference image landmarks (×) and out-of-plane template image landmarks projected

onto image (+).
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4.35: Results of affine registration between a 3D cine image and a 2D real-time

image on the same subject as in the controlled experiment, with an initial misalignment of

approximately 32mm in the z-direction (through the image plane). (a) Reference image

R. (b),(c) Template slice L before and after registration. (d),(e) Difference between the

reference image and template slice (L−R) before and after registration. (f),(g) Segmen-

tation masks showing left ventricle overlap before and after registration, with in-plane

reference image landmarks (×) and out-of-plane template image landmarks projected

onto image (+).
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Data Set Before registration After rigid registration After affine registration

Jaccard 1 0.86 ± 0.06 0.87 ± 0.07 0.92 ± 0.02

Dice 1 0.92 ± 0.04 0.93 ± 0.04 0.96 ± 0.01

Jaccard 2 0.75 ± 0.02 0.86 ± 0.02 0.87 ± 0.02

Dice 2 0.86 ± 0.02 0.93 ± 0.01 0.93 ± 0.01

Jaccard 3 0.77 ± 0.06 0.47 ± 0.13 0.21 ± 0.08

Dice 3 0.87 ± 0.04 0.63 ± 0.13 0.34 ± 0.12

Jaccard 4 0.49 ± 0.08 0.66 ± 0.05 0.73 ± 0.08

Dice 4 0.65 ± 0.07 0.80 ± 0.04 0.84 ± 0.06

Jaccard 5 0.80 ± 0.04 0.73 ± 0.03 0.83 ± 0.04

Dice 5 0.89 ± 0.03 0.84 ± 0.02 0.91 ± 0.02

Jaccard 6 0.76 ± 0.09 0.76 ± 0.09 0.80 ± 0.09

Dice 6 0.86 ± 0.06 0.86 ± 0.06 0.88 ± 0.06

Table 4.3: LV overlap before registration, after rigid registration, and after affine reg-

istration between a pre-operative 3D cine volume and a noisier, lower-resolution intra-

operative 2D real-time image, as in a clinical setting.



Chapter 4. Experiments and Results 69

and affine registration performed even worse. This was due to local deformation in the

cardiac region, consistent throughout the data available for Data Set 3. Since the body

cavity is considerably larger than the cardiac region and comprises most of the content

in each image, the algorithm accounted for the body cavity, not the heart. Thus, the LV

becomes more misaligned after registration. For Data Set 5, rigid registration returned

slightly worse values than what the algorithm initially started with, but affine registration

produced values that were a slight improvement over the initial data. From the values

for the rest of the data sets, however, affine registration returns better results in general

compared to rigid registration. The TRE was not calculated in this set of experiments

because the images are from the same slice locations, image resolution in the z-direction

(the direction normal to a short-axis slice) is much coarser than in the x- and y-directions

(within the plane of a short-axis image slice), and there is no ground truth available for

us to obtain more precise landmark locations. z-direction uncertainty would dominate

and render the results meaningless.



Chapter 5

Conclusions and Future Work

5.1 Discussions and Conclusions

In the previous section, it was demonstrated that the algorithm performs well in control

experiments where the reference image is a transformed and sliced version of the template

image. The left ventricle (LV) overlap between the 3D cine volume and a 2D cine image in

the previous section aligned well after registration, as quantified by the increased Jaccard

and Dice indices and by the lowered TRE. The affine model aligned images well for a

broader range of initial transformation parameters used to obtain R, and returned better

results compared to the rigid model for the 6 data sets available here, so we can conclude

that the affine model performs better than, or is at least comparable to, the rigid model

for control experiments, but at a small expense of computational time.

It was also demonstrated that, in control experiments, rigid registration does not

sufficiently account for deformations that are affine in nature. Rigid registration can,

however, return the same end-result image slice (slice of transformed template) if the

only affine deformations are scaling in the z-direction (w11) or shearing in directions

normal to the z-axis (w3 and w7).

The algorithm was also tested on other clinical data, registering high-resolution cine

70
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images to noisier, lower-resolution real-time images. An example of registration per-

formed between a real-time image slice and a cine image sliced at a location approxi-

mately 32 mm away in the normal direction from the real-time image was shown in the

previous section. The registration algorithm corrected the large z-direction translation

and produced a resulting image with structural features in the heart very similar to those

in the reference image, shown in Figures 4.34 and 4.35. It is worth noting that, the re-

gions outside the heart may not look as similar due to large motion of surrounding organs

such as the lungs and diaphragm. The Jaccard and Dice measures are two-dimensional

measures, therefore it is also important to note that their values are projections onto a

2D plane. Visually, the cine slice aligns well after registration and appears to be in the

same plane as the real-time image, but before registration, the cine slice is out of the

plane so measures of overlap before registration may not be meaningful. In computing

the TRE before and after registration, the z-component is also an estimate based on the

geometrical locations of the image slices, assuming that landmark motion normal to the

image plane is small compared to the slice thickness (8mm). The only way of verifying

the true location of a landmark, pinpointing its precise location, is to attach fiducial

markers to the landmarks – impossible for in vivo samples for obvious ethical reasons.

For the reasons described above, for such experiments where there is no ‘ground truth’

and where misalignment is attributed mainly to a component normal to the image plane,

i.e. the reference and template images are of objects in different geometrical spaces, it is

important to look at the end-result images to judge how well the registration algorithm

has aligned the images.

In registration between real-time images and cine images of the same slice location

and cardiac phase, affine registration generally performed better than rigid registration,

presumably due to its greater flexibility over the rigid model, allowing it to deform the

cine image to more closely match the real-time image. In Data Set 3, neither rigid

nor affine registration improved LV overlap after registration, and for Data Set 5, rigid
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registration did not improve LV overlap and affine registration only improved results

slightly.

We can conclude that between images of the same modality, the proposed multi-level

parametric 2D-3D registration scheme can align images well for misalignments within

reasonable limits encountered in clinical applications, such as motion due to respiration.

Despite different acquisition methods in the real-time and prior cine MR images, the

registration algorithm improved alignment with the SSD dissimilarity measure.

Affine registration was found to be a generally more robust model than rigid reg-

istration in this framework. This suggests that in attempting to improve results for

applications employing 2D-3D rigid registration with the SSD, one can first consider

simply expanding the transformation model to an affine one before considering more

complex dissimilarity measures and regularizers. The advantage of the affine model is its

simplicity, allowing more accurate registration at a small cost.

For multi-modality registration where intensities of the template and reference im-

ages differ more drastically, one can consider using other dissimilarity measures and/or

optimizers [Gos05, Mod09] that can fit well within the context of the general proposed

model.

5.2 Future Work

Although the template and reference MR images used in our experiments were acquired

using different pulse sequences, they were similar enough that the SSD was sufficient as a

distance measure. The SSD was initially not thought to be ideal as a distance measure,

since it depends on absolute values of intensity values, which can vary between different

image acquisitions. For registration between differing image types and to see if current

results can be improved, we could compare results obtained using other dissimilarity

measures. In registering MR images, we are most interested in aligning the boundaries
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of organs and the outlines of their features. One candidate distance measure is the

Normalized Gradient Field (NGF), which interprets intensity gradients as surface normals

and measures dissimilarity based on how well aligned the normals in one image are to

the normals in the other. It is however, susceptible to noise. One possible solution is to

smooth both images prior to measuring dissimilarity.

Other areas we could investigate are different choices of regularizers and optimizers.

Of interest are optimizers that may be more efficient and less taxing on computational

resources.

With data for 6 volunteers, our observations may generalize on cine and real-time

cardiac MR images, but with large uncertainty. If more data becomes available, we

would test our model again to see if similar results are observed and how consistent those

observations are.
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