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Abstract. Over the last decade, the process of automatic image col-
orization has been of significant interest for several application areas
including restoration of aged or degraded images. This problem is highly
ill-posed due to the large degrees of freedom during the assignment of
color information. Many of the recent developments in automatic col-
orization involve images that contain a common theme or require highly
processed data such as semantic maps as input. In our approach, we
attempt to fully generalize the colorization procedure using a condi-
tional Deep Convolutional Generative Adversarial Network (DCGAN).
The network is trained over datasets that are publicly available such as
CIFAR-10 and Places365. The results between the generative model and
traditional deep neural networks are compared.

1 Introduction

The automatic colorization of grayscale images has been an active area of
research in machine learning for an extensive period of time. This is due to
the large variety of applications such color restoration and image colorization
for animations. In this manuscript, we will explore the method of colorization
using generative adversarial networks (GANs) proposed by Goodfellow et al.
[1]. The network is trained on the datasets CIFAR-10 and Places365 [2] and its
results will be compared with those obtained using existing convolutional neural
networks (CNN).

Models for the colorization of grayscales began back in the early 2000s. In
2002, Welsh et al. [3] proposed an algorithm that colorized images through tex-
ture synthesis. Colorization was done by matching luminance and texture infor-
mation between an existing color image and the grayscale image to be colorized.
However, this proposed algorithm was defined as a forward problem, thus all solu-
tions were deterministic. Levin et al. [4] proposed an alternative formulation to
the colorization problem in 2004. This formulation followed an inverse approach,
where the cost function was designed by penalizing the difference between each
pixel and a weighted average of its neighboring pixels. Both of these proposed
methods still required significant user intervention which made the solutions less
than ideal.
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In [5], a colorization method was proposed by comparing colorization differ-
ences between those generated by convolutional neural networks and GAN. The
models in the study not only learn the mapping from input to output image, but
also learn a loss function to train this mapping. Their approach was effective in
ill-posed problems such as synthesizing photos from label maps, reconstructing
objects from edge maps, and colorizing images. We aim to extend their approach
by generalizing the colorization procedure to high resolution images and suggest
training strategies that speed up the process and greatly stabilize it.

2 Generative Adversarial Network

In 2014, Goodfellow et al. [1] proposed a new type of generative model: genera-
tive adversarial networks (GANs). A GAN is composed of two smaller networks
called the generator and discriminator. As the name suggests, the generator’s
task is to produce results that are indistinguishable from real data. The discrim-
inator’s task is to classify whether a sample came from the generator’s model
distribution or the original data distribution. Both of these subnetworks are
trained simultaneously until the generator is able to consistently produce results
that the discriminator cannot classify.

The architectures of the generator and discriminator both follow a multilayer
perceptron model. Since colorization is a class of image translation problems, the
generator and discriminator are both convolutional neural networks (CNNs).
The generator is represented by the mapping G(z; θG), where z is a noise vari-
able (uniformly distributed) that acts as the input of the generator. Similarly,
the discriminator is represented by the mapping D(x; θD) to produce a scalar
between 0 and 1, where x is a color image. The output of the discriminator can
be interpreted as the probability of the input originating from the training data.
These constructions of G and D enable us to determine the optimization prob-
lem for training the generator and discriminator: G is trained to minimize the
probability that the discriminator makes a correct prediction in generated data,
while D is trained to maximize the probability of assigning the correct label.
Mathematically, this can be expressed as

min
θG

J (G)(θD, θG) = min
θG

Ez [log(1 − D(G(z)))] , (1)

max
θD

J (D)(θD, θG) = max
θD

(Ex [log(D(x))] + Ez [log(1 − D(G(z)))]) . (2)

The above two equations provide the cost functions required to train a GAN.
In literature, these two cost functions are often presented as a single minimax
game problem with the value function V (G,D):

min
G

max
D

V (G,D) = Ex [log D(x)] + Ez [log(1 − D(G(z)))] . (3)

In our model, we have decided to use an alternate cost function for the gener-
ator. In Eq. 1, the cost function is defined by minimizing the probability of the
discriminator being correct. However, this approach presents two issues: (1) If
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the discriminator performs well during training stages, the generator will have a
near-zero gradient during back-propagation. This will tremendously slow down
convergence rate because the generator will continue to produce similar results
during training. (2) The original cost function is a strictly decreasing function
that is unbounded below. This will cause the cost function to diverge to −∞
during the minimization process.

To address the above issues, we have redefined the generator’s cost function
by maximizing the probability of the discriminator being mistaken, as opposed
to minimizing the probability of the discriminator being correct. The new cost
function was suggested by Goodfellow at NIPS 2016 Tutorial [6] as a heuristic,
non-saturating game, and is presented as:

max
θG

J (G)∗
(θD, θG) = max

θG

Ez [log(D(G(z)))] , (4)

which can also be written as the minimization problem:

min
θG

−J (G)∗
(θD, θG) = min

θG

−Ez [log(D(G(z)))] . (5)

The comparison between the cost functions in Eqs. 1 and 5 can be visualized
in Fig. 1 by the blue and red curves respectively. In addition, the cost function
was further modified by using the �1-norm in the regularization term [5]. This
produces an effect where the generator is forced to produce results that are
similar to the ground truth images. This will theoretically preserve the structure
of the original images and prevent the generator from assigning arbitrary colors
to pixels just to “fool” the discriminator. The cost function takes the form

min
θG

J (G)∗
(θD, θG) = min

θG

−Ez [log(D(G(z)))] + λ‖G(z) − y‖1 (6)

where λ is a regularization parameter and y is the ground truth color labels.

Fig. 1. Comparison of cost functions J(G) (dashed blue) and −J(G)∗
(red). (Color

figure online)
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2.1 Conditional GAN

In a traditional GAN, the input of the generator is randomly generated noise
data z. However, this approach is not applicable to the automatic colorization
problem because grayscale images serve as the inputs of our problem rather than
noise. This problem was addressed by using a variant of GAN called conditional
generative adversarial networks [7]. Since no noise is introduced, the input of
the generator is treated as zero noise with the grayscale input as a prior, or
mathematically speaking, G(0z|x). In addition, the input of the discriminator
was also modified to accommodate for the conditional network. By introducing
these modifications, our final cost functions are as follows:

min
θG

J (G)(θD, θG) = min
θG

−Ez [log(D(G(0z|x)))] + λ‖G(0z|x) − y‖1 (7)

max
θD

J (D)(θD, θG) = max
θD

(Ey [log(D(y|x))] + Ez [log(1 − D(G(0z|x)|x))]) (8)

The discriminator gets colored images from both generator and original data
along with the grayscale input as the condition and tries to decide which pair
contains the true colored image.

3 Method

Image colorization is an image-to-image translation problem that maps a high
dimensional input to a high dimensional output. It can be seen as pixel-wise
regression problem where structure in the input is highly aligned with structure
in the output. That means the network needs not only to generate an output with
the same spatial dimension as the input, but also to provide color information
to each pixel in the grayscale input image. We provide an entirely convolutional
model architecture using a regression loss as our baseline and then extend the
idea to adversarial nets.

In this work we utilize the L*a*b* color space for the colorization task. This is
because L*a*b* color space contains dedicated channel to depict the brightness
of the image and the color information is fully encoded in the remaining two
channels. As a result, this prevents any sudden variations in both color and
brightness through small perturbations in intensity values that are experienced
through RGB.

3.1 Baseline Network

For our baseline model, we follow the “fully convolutional network” [8] model
where the fully connected layers are replaced by convolutional layers which
include upsampling instead of pooling operators. This idea is based on encoder-
decoder networks [9] where input is progressively downsampled using a series of
contractive encoding layers, and then the process is reversed using a series of
expansive decoding layers to reconstruct the input. Using this method we can
train the model end-to-end without consuming large amounts of memory. Note
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that the subsequent downsampling leads to a much more compact feature learn-
ing in the middle layers. This strategy forms a crucial attribute to the network,
otherwise the resolution would be limited by GPU memory.

Our baseline model needs to find a direct mapping from the grayscale image
space to color image space. However, there is an information bottleneck that
prevents flow of the low level information in the network in the encoder-decoder
architecture. To fix this problem, features from the contracting path are con-
catenated with the upsampled output in the expansive path within the network.
This also makes the input and output share the locations of prominent edges in
grayscale and colored images. This architecture is called U-Net [10], where skip
connections are added between layer i and layer n-i.

The architecture of the model is symmetric, with n encoding units and n
decoding units. The contracting path consists of 4 × 4 convolution layers with
stride 2 for downsampling, each followed by batch normalization [11] and Leaky-
ReLU [12] activation function with the slope of 0.2. The number of channels are
doubled after each step. Each unit in the expansive path consists of a 4 × 4
transposed convolutional layer with stride 2 for upsampling, concatenation with
the activation map of the mirroring layer in the contracting path, followed by
batch normalization and ReLU activation function. The last layer of the network
is a 1 × 1 convolution which is equivalent to cross-channel parametric pooling
layer. We use tanh function for the last layer as proposed by [5]. The number of
channels in the output layer is 3 with L*a*b* color space (Fig. 2).

We train the baseline model to minimize the Euclidean distance between
predicted and ground truth averaged over all pixels:

J(x; θ) =
1
3n

3∑

�=1

n∑

p=1

‖h(x; θ)(p,�) − y(p,�)‖22 (9)

where x is our grayscale input image, y is the corresponding color image, p and
� are indices of pixels and color channels respectively, n is the total number of
pixels, and h is a function mapping from grayscale to color images.

3.2 Convolutional GAN

For the generator and discriminator models, we followed Deep Convolutional
GANs (DCGAN) [13] guidelines and employed convolutional networks in both

Fig. 2. U-Net architecture (256 × 256 input)
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generator and discriminator architectures. The architecture was also modified as
a conditional GAN instead of a traditional DCGAN; we also follow guideline in
[5] and provide noise only in the form of dropout [14], applied on several layers
of our generator. The architecture of generator G is the same as the baseline. For
discriminator D, we use similar architecture as the baselines contractive path:
a series of 4 × 4 convolutional layers with stride 2 with the number of channels
being doubled after each downsampling. All convolution layers are followed by
batch normalization, leaky ReLU activation with slope 0.2. After the last layer,
a convolution is applied to map to a 1 dimensional output, followed by a sigmoid
function to return a probability value of the input being real or fake. The input
of the discriminator is a colored image either coming from the generator or true
labels, concatenated with the grayscale image.

3.3 Training Strategies

For training our network, we used Adam [15] optimization and weight initial-
ization as proposed by [16]. We used initial learning rate of 2 × 10−4 for both
generator and discriminator and manually decayed the learning rate by a factor
of 10 whenever the loss function started to plateau. For the hyper-parameter λ
we followed the protocol from [5] and chose λ = 100, which forces the generator
to produce images similar to ground truth.

GANs have been known to be very difficult to train as it requires finding
a Nash equilibrium of a non-convex game with continuous, high dimensional
parameters [17]. We followed a set of constraints and techniques proposed by
[5,13,17,18] to encourage convergence of our convolutional GAN and make it
stable to train.

– Alternative Cost Function
This heuristic alternative cost function [6] was selected due to its non-
saturating nature; the motivation for this cost function is to ensure that each
player has a strong gradient when that player is “losing” the game.

– One Sided Label Smoothing
Deep neural networks normally tend to produce extremely confident outputs
when used in classification. It is shown that replacing the 0 and 1 targets for
a classifier with smoothed values, like .1 and .9 is an excellent regularizer for
convolutional networks [19]. Salimans et al. [17] demonstrated that one-sided
label smoothing will encourage the discriminator to estimate soft probabili-
ties and reduce the vulnerability of GANs to adversarial examples. In this
technique we smooth only the positive labels to 0.9, leaving negative labels
set to 0.

– Batch Normalization
One of the main difficulties when training GANs is for the generator to collapse
to a parameter setting where it always emits the same output [17]. This phe-
nomenon is called mode-collapse, also known as the Helvetica scenario [6].
When mode-collapse has occurred, the generator learns that a single output is
able to consistently trick the discriminator. This is non-ideal as the goal is for
the network to learn the distribution of the data rather than the most ideal way
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of fooling the discriminator. Batch normalization [11] is proven to be essential
to train both networks preventing the generator from collapsing all samples to
a single point [13]. Batch-Norm is not applied on the first layer of generator and
discriminator and the last layer of the generator as suggested by [5].

– All Convolutional Net
Strided convolutions are used instead of spatial pooling functions. This effec-
tively allows the model to learn its own downsampling/upsampling rather
than relying on a fixed downsampling/upsampling method. This idea was
proposed in [20] and has shown to improve training performance as the net-
work learns all necessary invariances just with convolutional layers.

– Reduced Momentum
We use Adam optimizer [15] for training both networks. Recent research has
shown that using a large momentum term β1 (0.9 as suggested), could result
in oscillation and instability in training. We followed the suggestion in [13] to
reduce the momentum term to 0.5.

– LeakyReLU Activation Function
Radford et al. [13] showed that using leaky ReLU [5] activation functions in
the discriminator resulted in better performance over using regular ReLUs.
We also found that using leaky ReLU in the encoder part of the generator as
suggested by [5] works slightly better.

4 Experimental Results

To measure the performance, we have chosen to employ mean absolute error
(MAE) and accuracy. MAE is computed by taking the mean of the absolute
error of the generated and source images on a pixel level for each color channel.
Accuracy is measured by the ratio between the number of pixels that have the
same color information as the source and the total number of pixels. Any two
pixels are considered to have the same color if their underlying color channels
lie within some threshold distance ε. This is mathematically represented by

acc(x, y) =
1
n

n∑

p=1

3∏

�=1

1[0,ε�](|h(x)(p,�) − y(p,�)|) (10)

where 1[0,ε�](x),x ∈ R denotes the indicator function, y is the corresponding
color image, h is a function mapping from grayscale to color images, and ε� is
a threshold distance used for each color channel. The training results for each
model are summarized in Table 1. Some of the preliminary results using the
CIFAR-10 (32 × 32) dataset are shown in AppendixA. The images from GAN
had a clear visual improvement than those generated by the baseline CNN. The
images generated by GAN contained colors that were more vibrant whereas the
results from CNN suffered from a light hue. In some cases, the GAN was able
to nearly replicate the ground truth. However, one drawback was that the GAN
tends to colorize objects in colors that are most frequently seen. For example,
many car images were colored red. This is most likely due to the significantly
larger number of images with red cars than images with cars of another color.
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Table 1. Training results of baseline model and GAN.

Dataset Network Batch size EPOCHs MAE Accuracy ε = 2% Accuracy ε = 5%

CIFAR-10 U-Net 128 200 7.9 13.7 37.2%

CIFAR-10 GAN 128 200 5.1 24.1 65.5%

Places365 GAN 16 20 7.5 18.3 47.3 %

The preliminary results using Places365 (256×256) are shown in AppendixB.
We noticed that there were some instances of mis-colorization: regions of images
that have high fluctuations are frequently colored green. This is likely caused
by the large number of grassland images in the training set, thus the model
leans towards green whenever it detects a region with high fluctuations in pixel
intensity values. We also noticed that some colorized images experienced a “sepia
effect” seen with CIFAR-10 under U-Net. This hue is evident especially with
images with clear sky, where the color of the sky includes a strange color gradient
between blue and light yellow. We suspect that this was caused by insufficient
training, and will correct itself over time.

5 Conclusion and Future Work

In this study, we were able to automatically colorize grayscale images using GAN,
to an acceptable visual degree. With the CIFAR-10 dataset, the model was able
to consistently produce better looking (qualitatively) images than U-Net. Many
of the images generated by U-Net had a brown-ish hue in the results known as
the “Sepia effect” across L*a*b* color space. This is due to the L2 loss function
that was applied to the baseline CNN, which is known to cause a blurring effect.

We obtained mixed results when colorizing grayscale images using the
Places365 dataset. Mis-colorization was a frequent occurrence with images con-
taining high levels of textured details. This leads us to believe that the model
has identified these regions as grass since many images in the training set con-
tained leaves or grass in an open field. In addition, this network was not as
well-trained as the CIFAR-10 counterpart due to its significant increase in reso-
lution (256 × 256 versus 32 × 32) and the size of the dataset (1.8 million versus
50, 000). We expect the results will improve if the network is trained further.

We would also need to seek a better quantitative metric to measure perfor-
mance. This is because all evaluations of image quality were qualitative in our
tests. Thus, having a new or existing quantitative metric such as peak signal-
to-noise ratio (PSNR) and root mean square error (RMSE) will enable a much
more robust process of quantifying performance.

Source code is publicly available at:
https://github.com/ImagingLab/Colorizing-with-GANs
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A CIFAR-10 Results

See Fig. 3.

Fig. 3. Colorization results with CIFAR10. (a) Grayscale. (b) Original Image. (c) Col-
orized with U-Net. (d) Colorized with GAN. (Color figure online)

B Places365 Results

See Fig. 4.

Fig. 4. Colorization results with Places365 (a) Grayscale. (b) Original Image. (c) Col-
orized with GAN. (Color figure online)
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