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Abstract. Statistical atlases of myocardial fiber directions have great
utility in modelling applications. The first step in building atlases
requires a registration of the hearts to a template. In this paper, we
performed groupwise registration on a small database of explanted pig
hearts (N = 4) and coupled it with a multilevel pairwise registration
framework in order to generate an average cardiac geometry. The scheme
implemented in our experiments effectively registers and normalizes the
hearts despite a high variability in cardiac measurements. In addition,
we adopted an intuitive averaging technique on the transformed versions
of each heart to obtain a new reference geometry at every iteration.
This reduces biases that may be introduced by the selection of an initial
reference geometry in the construction of an average cardiac geometry.
The next step will focus on improving current results by using a larger
database of heart samples.
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1 Introduction

Cardiovascular disease continues to be the leading cause of death, accounting
for 30% of mortality worldwide [1]. There has been an increasing demand to
understand the mechanical and electrical activities of the heart through the
construction of atlases that model healthy hearts, against which pathological
hearts can be compared. However, availability of explanted human hearts is
scarce. Thus, studying large hearts (e.g. canine and pig hearts) could provide
a good alternative as the cardiac anatomies and functions of the three species
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are very similar. A statistical comparison between canine and human hearts in
terms of their fiber orientations and their variability is provided in [2].

In this paper, we aim to lay the foundation of a framework for construct-
ing a statistical atlas of a healthy porcine heart. To do this, we first need a
registration framework that allows us to calculate transformations that would
normalize their geometries. Specifically, we focus on the construction of an aver-
age cardiac geometry through groupwise registration of anatomical magnetic
resonance (MR) images obtained using a diffusion-weighted method applied to
a small database of porcine hearts (Fig. 1).

Fig. 1. Workflow diagram for building a statistical porcine cardiac atlas. Diffusion-
weighted MR images of porcine hearts were acquired as discussed in Sect. 2.1, and then
an average cardiac geometry was constructed through groupwise registration framework
initialized by a multilevel affine and non-parametric pairwise registration scheme.

2 Methods

In this section, we discuss both the data acquisition methods and the registration
framework used for our experiments.

2.1 Data Acquisition

All diffusion-weighted (DW) MRI studies were performed on a dedicated 1.5T
GE Signa Excite scanner using freshly explanted healthy pig hearts [5]. In the
current study, we used the following MR parameters: TE = 35 ms, TR =
700 ms, echo train length = 2, b-value = 0 for the unweighted MR images and
b = 500 s/mm2 when the seven diffusion gradients were applied, respectively.
We used the same field of view (FOV) and a 256 × 256 k-space. The total scan
time for DW imaging was approximately 8 h.

2.2 Pairwise Registration of the Anatomical MR Images

Constructing an average geometry for cardiac data is not trivial due to its vari-
ability in terms of scaling and spatial structures. Thus, we need to use an app-
roach that caters to large deformations and assures the correct alignment of cor-
responding cardiac structures. In [2], a combination of constrained affine registra-
tion and hybrid intensity-based and feature-based non-rigid registration algorithm
was used for the pairwise registration step. The constrained affine registration step
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served to normalize the heights and radii of the hearts, while non-rigid registration
ensured precise matching of cardiac structures. It is important to note, however,
that the approach in [2] implied the need for selection of landmarks.

We followed the image registration outline proposed in [2] to align the hearts
in the data set and come up with an average geometry. However, instead of using
a non-rigid registration algorithm for pairwise registration, we used a combina-
tion of affine and non-parametric registration to align each subject to the current
reference geometry. At every iteration, a reference geometry is obtained by com-
puting the average of the transformations that register each of the hearts to the
current reference geometry.

2.2.1 Mathematical Model
Given a template image T : Ω ⊂ R

3 → R and a reference image R : Ω ⊂ R
3 →

R, our goal is to find a reasonable transformation such that a transformed version
of the template image T is similar to the reference R [10]. Mathematically, this
can be modelled by solving the optimization problem

min
y

J [y] = D [T [y] ,R] + S [y] , (1)

where y : Ω → R
3 is the transformation that aligns T to R, and T [y] is a

transformed version of the template image T .
The first term (D) in the joint functional J measures the similarity between

the two images and thus helps determine if there is a reasonable match between
the image features. The second term (S) is the regularization term, which makes
the registration problem well-posed.

In our implementation, we used the sum of squared differences (SSD) for
similarity measure, i.e.,

D [T [y] ,R] =
1
2

∫
Ω

(T [y](x) − R(x))2 dx. (2)

The above integral is approximated using a midpoint quadrature rule on a cell-
centered grid with mesh spacing hi in each dimension i ∈ {1, 2, 3}. Its discretized
form is given by

DSSD,h
(
Th, Rh

)
=

1
2
hd‖Th − Rh‖2,

with hd = h1 · h2 · h3.
The regularization term S[y] enforces the functional to lead to a unique min-

imizer. In our experiments, we used the elastic potential of the transformation
y for our regularization term [10]. It is given by

S[y] = Elastic Potential[y − yref].

2.2.2 Multilevel Representation of Data
In this paper, we used a multilevel registration scheme to initialize each iteration
in the groupwise registration. With a multilevel approach, we start by solving
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the minimization problem on a coarser level and then progress onto finer levels.
The solutions on the coarser levels serve as starting guesses for the next (finer)
levels. This is an efficient method for aligning two 3D images since computations
on coarser levels are cheaper relative to those on finer levels. This approach also
helps avoid running into local minimizers.

To obtain a smoothed measurement of an image in different levels, we get
the average of the intensity values of adjacent cells. A detailed discussion on
the computation of a multilevel representation of a 3D MR image can be found
in [10].

2.2.3 Affine and Non-parametric Registration
From the coarsest to the finest level, we solve the discretized form of the opti-
mization problem in (1), which is given by

min
yh

J h
[
yh

]
= D

(
Th, Rh; yh

)
+ S

(
yh − yref,h

)
. (3)

At the coarsest level, an affine parametric registration is performed. An affine
transformation is one that preserves points, lines and planes. It allows for trans-
lation, rotation, scaling, and shearing.

An affine transformation y = [y1, y2, y3]T of a point [x1, x2, x3]T ∈ R
3 may

be parametrized as

y1 = w1x
1 + w2x

2 + w3x
3 + w4

y2 = w5x
1 + w6x

2 + w7x
3 + w8

y3 = w9x
1 + w10x

2 + w11x
3 + w12.

The solution y(w, x) to the affine registration problem [10] at the coarsest
level will serve as the initial guess for the reference transformation yref for the
elastic regularizer S[y] in the non-parametric registration step. That is, yref =
y(w, x).

At every level, the minimization problem (3) is solved using a Gauss-Newton
approach with an Armijo line search. The initial guess at every level is given by
the prolongated version of the solution yh from the preceding coarser level.

3 Groupwise Registration

Various methods have already been used to normalize cardiac geometries. In
[4], a new reference geometry is computed each time an image in the data set
is registered. Here, we adopted the method used in [8] and [2], where biases
introduced by using one of the anatomical MR images as the first reference
image were eliminated by registering the images to the same current reference
geometry.

At every iteration, the reference geometry is updated using an averaging
technique that takes into account all the transformations that align each subject
to the current reference geometry. The update to the current reference geometry
is given by
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In+1
mean(x

h) =
1
N

N∑
i=1

Ii

(
Tn

i ◦ [Tn
mean]

−1 (xh)
)

, (4)

where N is number of images in the data set, xh is the original grid, Ii are
the anatomical MR images, i = 1, 2, . . . , N , Tn

i is the mapping that registers
the ith subject to the nth reference geometry, and Tn

mean is the average of the
transformations Tn

i at the nth iteration defined as Tn
mean = 1

N

∑N
i=1 Tn

i . The
term [Tn

mean]
−1 is the inverse of the average of the transformations Tn

mean, and ◦
denotes the composition of transformations.

Repeating the update process in (4) leads to an average geometry Imean and
a collection of transformations aligning the anatomical MR images to Imean. We
can then use these transformations to transform the diffusion tensors of all the
diffusion-weighted MR images in the data set.

In our implementations, we assumed that the transformation T and displace-
ment d obtained when aligning a template image to a reference image are related
by the equation T (xh) = xh + d(xh). An inverse for the transformation T may
be approximated by

[
T (xh)

]−1 ≈ xh − d(xh)
= xh −

(
T (xh) − xh

)
= −T (xh) + 2xh.

Thus, an approximation of the inverse for the average transformation field
Tn
mean is [

Tn
mean(x

h)
]−1 ≈ −Tn

mean(x
h) + 2xh. (5)

An outline of the groupwise registration framework is given in Algorithm 1.

Algorithm 1. The Groupwise Registration Framework
1. Initialize n = 0.
2. Set an arbitrary image in the data set as the initial reference image Inmean.
3. Use multilevel non-parametric registration to register each image in the data set

to Inmean and store the resulting transformation field Tn
i that aligns each pair of

images.
4. Compute the average transformation field Tn

mean at the nth step.
5. Approximate the inverse of Tn

mean using the formula in (5).
6. Transform each image in the data set by interpolating the intensity values of each

subject Ii over the composition Tn
i ◦ [Tn

mean]
−1 (xh).

7. Compute the average of transformed images to obtain the new current reference
geometry In+1

mean(x
h).

8. Update n ← n + 1.
9. Repeat steps 3 to 8 until the method converges.
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4 Results

In this section, we present some of the results obtained after implementing the
algorithm discussed in the previous section on a small database of three healthy
porcine hearts. We will also comment on the efficiency of the pairwise registration
method used to align the full hearts to the reference geometries and on how fast
the groupwise registration algorithm converges to a stable average geometry.

The unweighted center axial slices of the 3D MR images of the three healthy
pig hearts used in our experiments are displayed in Fig. 2(a)–(c). Figure 2(d)
shows the subjects superimposed on each other. Observe how varied the subjects
are in terms of their heights and radii. Note that the image relating to Fig. 2(b)
was set as the initial reference geometry, i.e., I0mean.

(a) (b) (c) (d)

Fig. 2. Variability of heart geometries. (a)–(c) The three anatomical MR images used
in our data set and (d) the three hearts overlaid onto each other.

We now observe the efficiency of the pairwise registration method imple-
mented in our experiments. Shown in Fig. 3(a) and (e) are the initial and fourth
reference geometries, respectively. The hearts in green masks in Fig. 3(b)–(d) and
(f)–(h) are the transformed versions of the three subjects, superimposed against
I0mean and I4mean, respectively. The pairwise registration algorithm that we used
was able to determine reasonable transformations registering the full hearts to
the current reference geometries, as demonstrated by the overlap between the
template and reference images.

We observed that the method needs only a few iterations until it converges to
a reasonable and stable average geometry. In our experiments, a stable average
geometry was achieved after 5 to 7 iterations. Presented in Fig. 4 are the absolute
changes |In

mean − In−1
mean| in the reference geometries for iterations n = 1, 2, 3, 4.

Figure 4 (c)–(d) being “almost black” indicates that there is minimal update
made to the previous reference geometry. We also calculated the average change
in the intensity values of the 256 × 256 × 128 array |In

mean − In−1
Imean| for the

first seven iterations. The average change in intensity values dropped from more
approximately 0.055 to 0.010, where the intensity change was is in the interval
[0, 1]. The results are displayed in Fig. 5.

In Fig. 6, we show the first reference geometry and the computed average
geometry and compared how the reference geometry changed after 7 iterations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Efficiency of the Pairwise Registration. (a) Initial reference geometry, (b)–(d)
[in green mask] Transformed versions of the hearts in Fig. 2 vs I0mean [in pink mask], (e)
Fourth reference geometry, (f)–(h) [in green mask] Transformed versions of the subjects
vs I4mean [in pink mask] (Color figure online)

(a) |I1mean − I0mean| (b) |I2mean − I1mean| (c) |I3mean − I2mean| (d) |I4mean − I3mean|

Fig. 4. Illustration of the rate of convergence of the groupwise framework to a stable
reference geometry. (Color figure online)

Visually, the groupwise registration framework was able to normalize the heights
and radii of the three subjects and converged to a reasonable average geometry.

Finally, we added an extra fourth subject to our data set, which significantly
increased the variability of the cardiac geometries used in the above experiments.
The additional subject is shown in Fig. 7(a), and again in Fig. 7(b) superim-
posed against the initial reference geometry. In Fig. 7(c), we present the result
after aligning the aforementioned subject to the first reference image (Fig. 3(a)).
Despite the differences in the cardiac features and geometries between I0mean and
the new heart, the algorithm was still able to find a reasonable transformation
that registers the two images. Groupwise registration converged to a stable and
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Fig. 5. Average change in Inmean after each iteration.

(a) I0
mean (b) I7

mean (c) I0
mean vs I7

mean (d) |I7
mean − I0

mean|

Fig. 6. Evolution of the reference geometries. (a) The initial reference geometry,
(b) final average geometry, (c) final reference geometry overlaid onto the initial average
geometry, and (d) the absolute change in the reference geometries.

(a) (b) (c) (d)

Fig. 7. Introduction of an Additional Cardiac Data. The same framework was imple-
mented with an outlier cardiac data (N = 4). (a) The newly added cardiac MR image,
(b) New subject vs I0mean, (c) Result of the pairwise registration of (a) to I0mean, and
(d) The average geometry computed from the database of the 4 porcine hearts.
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reasonable average geometry after 9 iterations. The iterations were stopped when
the absolute change in successive reference geometries was less than 0.01, i.e.,
|In

mean − In−1
mean| < 0.01.

5 Future Work and Conclusions

In this paper, we laid the foundation of a framework for building a statisti-
cal atlas for healthy porcine hearts by computing an average cardiac geometry
from a small database of four freshly explanted healthy porcine hearts. We also
demonstrated that the groupwise registration framework that we used converges
to a stable average geometry. In addition, the multilevel non-parametric-based
registration algorithm was able to successfully normalize the heart geometries
and find reasonable transformations registering the subjects to each current ref-
erence geometry.

The next step would be to include more hearts in our experiments so that
the average geometry would be a more accurate representation of a healthy
porcine heart. Along with this, we are planning to compare the efficiency of the
Diffeomorphic Log-Demons registration algorithm in [7] with the one we have
implemented in this paper.

After building an average geometry, we aim to transform the diffusion tensors
of the diffusion-weighted images of the anatomical MRIs to better understand
porcine cardiac fiber and laminar sheet orientations needed in building a statis-
tical atlas. The diffusion tensors can be transformed with the same deformations
obtained in the pairwise registration step.
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