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Abstract

We develop an image processing pipeline on Magnetic Resonance Imaging (MRI) se-

quences to identify features of Focal Cortical Dysplasia (FCD) in patients with MRI-

visible FCD. We aim to use a computer-aided diagnosis system to identify epileptogenic

lesions with a combination of established morphometric features and textural analysis

using Gray-Level Co-occurrence Matrices (GLCM) on MRI sequences. The model will

be validated on paediatric subjects. Preliminary morphometric analysis explored the

use of computational models of established MRI features of FCD in aiding identification

of subtle FCD on MRI-positive subjects. Following this, classification techniques were

considered. The 2-Step Naive Bayes classifier was found to produce 100% subjectwise

specificity and 94% subjectwise sensitivity (with 75% lesional specificity, 63% lesional

sensitivity). Thus it correctly rejected 13/13 healthy subjects and colocalized lesions in

29/31 of the FCD cases with MRI visible lesions, with 63% coverage of the complete

extent of the lesion using supplied lesional labels.
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Chapter 1

Introduction

1.1 Focal Cortical Dysplasia

With an incidence rate of 4-9/1000 per year, epilepsy is characterized as one of the most

frequently observed neurological disorders in childhood [CNP+06] [CJGM00]. Of these

cases, 25% are drug resistant and identified as cases of intractable epilepsy. Prolonged

uncontrolled epilepsy is detrimental to the neurodevelopment of a child and can cause

long-lasting impact on their neurocognitive development or premature death. Surgical

treatment through resection of the lesion responsible for epilepsy is an option in selected

patients. Pre-surgical evaluation of Magnetic Resonance Imaging (MRI) plays a crucial

role in identifying the lesion.

Focal Cortical Dysplasia (FCD) is a brain malformation that is frequently responsi-

ble for epilepsy in children and accounts for approximately 26% of intractable epilepsy

in children [WCK+98]. In children with refractory focal epilepsy, a lesion can be identi-

fied on MRI in 30-85% of cases [Dun97] [CTG+03]. FCD is a brain malformation that

causes seizures [RL01]. Unlike tumors, FCD can be subtle and difficult to detect using

standard MRI. FCD lesions are associated with several T1-weighted MRI features, in-

cluding abnormal cortical thickness, abnormal sulcal pattern, blurring of the gray-white

1
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matter junction, and abnormal signal in the white and/or gray matter (Figure 1.1). A

radiologist may employ these features to identify an FCD on MRI [ACB+03].

The use of different modalities is another consideration in lesion detection. Different

MRI acquisitions methods such as volumetric T1-weighted, T2-weighted, and FLAIR

(Fluid Attenuated Inversion Recovery) vary in terms of their ability to recognize certain

features. For instance, studies have indicated T2-weighted, and FLAIR MRI images are

better at identifying abnormal signal in the white matter compared to sequences acquired

from T1 [FSBD08]. On the other hand, volumetric T1-weighted images, due to their thin-

ner slices, are superior for examining variations in cortical thickness [DCDDS12]. FCD

is one of the most challenging group of lesions to detect on conventional MRI as the

imaging features may be subtle and not infrequently missed. Additionally, the com-

monly recognized features of FCD may not all be present in a given case. Some cases of

FCD may exhibit one or two of the identifiable features, while others may exhibit more

[ACB+03]. For these reasons, limiting assessment to one feature could inevitably lead

to false negative. Those with FCD and normal MRI are known to have MRI-negative

epilepsy, or non-lesional epilepsy. Cases with visible lesions on MRI have MRI-positive

epilepsy [ACB+03]. Up to 72% of cases of MRI negative epilepsy have FCD [LLK+05]

[JNB+07] [MBR+07] [KHD+07].

Patients with a lesion seen on MRI have better surgical outcomes, while those with

MRI-negative focal epilepsy have poorer surgical outcomes. In studies of MRI-negative

cases of focal epilepsy, the surgical resection seizure cure rates fell within the range of

0-31% [HW88] [KCB+03] [Ras63]. Comparing this to a study of 294 subjects of which

the majority was composed of MRI-positive cases (91% of the total subjects) of lesional

epilepsy, there was a 73% seizure cure rate following neocortical resection [Bon80]. Thus,

pre-surgical identification of lesion can benefit the surgical outcome and has therapeutic

and prognostic implications [AWG+17], [ACB+03].
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(a) (b)

(c) (d)

Figure 1.1: MRI features of FCD used in standard neuroradiological analysis. Recognized

FCD features include blurring of the gray-white matter junction, abnormal signal in the

white or gray matter, abnormal sulcal pattern, and cortical thickening. Sample cases with

arrows indicating regions of abnormality on the basis of standard MRI features used for

diagnostic analysis. (a) Blurring Gray White Junction and also high T1 signal in cortex

(Subject NL005), (b) Abnormal Sulcation (Subject NL036), (c) High signal in cortex

(FLAIR) (Subject NL037) and (d) Abnormal Cortical Thickness (Subject NL039). Two

cases of high signal are presented in (a) and (c). The reason for doing so is to depict

that even in cases where the same feature is present, the magnitude at which it presents

itself may vary from subject to subject.
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Differentiating FCD lesions from healthy cortex using standard radiological analysis

does not always yield results and serves as motivation for quantitative image analysis

[LWN08]. The subjectivity of visual assessment and reliance on observer expertise, high-

lights the need for an objective tool for MRI assessment. The availability of higher res-

olution MRI acquisitions have resulted in the natural step towards the use of computer-

aided techniques during pre-surgical evaluation. Incorporating image-processing tech-

niques offers the potential to detect subtle structural variations not visible otherwise,

and improve prognosis [ACB+03]. Steps to produce automated lesion detection through

post-processing techniques using multiple features in conjunction with classification using

surface based features [AWG+17] [HKS+14] and textural analysis [ACB+03] have yielded

positive results. Such methods have been shown to improve pre-surgical detection of

Focal Cortical Dysplasia in MRI scans [ACB+03].

1.2 Literature Review

Many efforts have been made to improve epileptogenic lesion detection through compu-

tational means. [EAHCL13] explored the use of a one-class Support Vector Machines

(OC-SVM) in voxel-wise classification for intractable epilepsy. Their dataset consisted of

29 Healthy control subjects (18-53 years), and the test set consisted of two FCD patients.

Following normalization, Statistical Parametric Mapping (SPM) was used to label tissue

classes. Z-score values were computed from probability maps of the control data for fea-

ture data. Given that SVM normally follows a standard two class problem, a modified

version [SPST+01] was employed in which samples are trained solely on controls before

being mapped to a higher dimensional space using a feature map. This yielded distance

maps, which is finally thresholded at appropriate values to identify lesions. Voxel clusters

were returned as output and ranked on the basis of size and suspicion.

[FSBD08] also utilized SPM, in this case, to perform voxel-based analysis of T2 FLAIR
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scans that were coregistered (i.e. aligned to T1-weighted acquisitions) for a dataset of 25

FCD cases and 25 controls subjects to automate detection. Scans were then segmented

into tissue classes and normalized. To evaluate for differences, regions of interest were

manually outlined in control cases for five anatomical areas and these regions were com-

pared to their counterparts in FLAIR images. SPM was used in analysis to compare

individual controls against other control subjects and to compare individual patients

against control data.

Whole-brain morphometry was explored for a dataset of 41 patients specifically with

frontal lobe epilepsy with 41 matched controls by [HBS+16]. Structural differences were

mapped relative to healthy subjects, and comparison was performed based on variations

in cortical thickness and folding complexity. Classification was accomplished using a

SVM classifier.

To enhance visualization of MRI features of FCD, specifically blurring at the gray-

white interface, [HGF+05] developed an automated morphometric analysis script in

MATLAB. Subsequent to normalization and segmentation, voxels with signal intensity

between gray and white matter are identified with a histogram analysis of the segmented

gray matter and white matter images. Binary images are composed to represent the

distribution of the voxels. These images are filtered by performing a three-dimensional

convolution and before finally being compared to the normal controls.

Exploring Surface Based Morphometry (SBM), through tools like FreeSurfer can

achieve 3D-Cortical Mapping and aid in automated detection of FCD lesions [MBF15].

Textural analysis can also supply information not directly available. [BAC+01] applied a

post-processing method combining morphometry and texture that supplies quantitative

information referencing spatial gray level variations in pixel neighborhoods to produce

maps highlighting cortical thickening, blurring at the junction and relative variations

in signal intensity for cases of extra-temporal partial epilepsy. [BBC+08] too combined

attributes of morphometry and texture with a fuzzy K-Nearest Neighbor (fk-NN) clas-
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sifier. The combination of textural analysis and structural features was also explored

by [ACB+03] who combined the two with a 2-Step Bayesian classifier. The process con-

sisted of creating 3D maps of cortical thickness, gradient magnitude at the interface, and

a relative intensity operator along with textural analysis using Gray Level Co-Occurrence

Matrices (GLCMs). Classification was conducted in two steps using a Naive-Bayes clas-

sifier and results were thresholded using control data to identify lesional clusters.

Computer-assisted implementations of automated Focal Cortical Dysplasia epilep-

togenic lesion detection have shown positive results, however these methods have not

produced equal success when applied to cases in developing brains [AWG+17].

1.3 Objective

FCD is frequently responsible for surgically remediable cases of intractable epilepsy in

children, however lesion detection requires a radiologist to examine a scan slice by slice,

and the lesion itself is very subtle. In studies conducted with adult cohorts, FCD detection

was improved with computational techniques, but they have not been as effective when

applied to developing brains [AWG+17]. Thus, our key aim is to assist radiologists in

paediatric lesion identification in MRI-positive cases using computational techniques.

We seek to explore the development of a unified mathematical model that considers

segmentation, morphometric analysis, and textural analysis in a joint formulation for

this purpose. The model will be validated on paediatric subjects. This study seeks to

develop an image processing pipeline using textural and morphometric analysis on MRI

sequences to identify features of FCD in patients with MRI-visible FCD. We will examine

statistical, machine learning, and image processing techniques as means of enhancing

diagnostic practices for paediatric Focal Cortical Dysplasia.

We seek to develop a system that could determine whether a subject is healthy or has

FCD, and detect the location of FCD in a subject identified as FCD-positive. We aim



Chapter 1. Introduction 7

to examine the use of objective features including cortical thickness, and blurring of the

interface, with textural features to identify features of FCD in patients with MRI-positive

FCD. Regions will be identified through a combination of thresholding and classification

algorithms. Following this, a supplementary experiment will be performed extending

classification techniques to MRI-negative epilepsy to determine if the tool can detect

subtle features FCD not detected by visual assessment.

1.4 Outline

The work conducted in [ACB+03] served as the key motivation of our analysis upon

which a majority of our pipeline was built. Our goal is to consider more than one mor-

phometric feature with textural attributes to examine their use in diagnostic methods.

The background information pertaining to software used, a description of the data set,

the measures used for evaluating performance, an introduction to the common T1 MRI

features, and the theory relating to the classification methods and textural analysis are

first presented in Chapter 2. Following this, Chapter 3 contains the experiments and

results. The experiments can be split into two major ideas: preliminary morphometry

experiments (Section 3.1) and identifying epileptogenic lesions using classification tech-

niques using morphometric and textural analysis (Section 3.2).

In Section 3.1, we begin with preliminary data analysis using morphometric features.

Specifically, we seek to examine the use of cortical thickness measures (Subsection 3.1.1)

and blurring of the gray/white matter interface using gradient magnitude (Subsection

3.1.2) on T1 acquisitions as a means of identifying epileptogenic features in MRI-Positive

subjects. A secondary experiment was performed using blurring of the gray/white matter

to compare results produced from T2-weighted and FLAIR images.

Voxelwise classification has been a key method for detecting lesions in medical imag-

ing. Building off this idea we seek to incorporate textural analysis. Thus our next step
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is to consider morphometry and texture in analysis conducted on MRI-Positive subjects

and Healthy Controls. To perform classification we seek to produce a modified method

of the 2-Step Bayesian classifier described by [ACB+03]. In addition to this, we perform

comparative analysis using other common classification techniques. In 3.2 we start with

the background 3.2.1 and experimental setup 3.2.2 for our experiments in implementing

classification techniques. A preliminary comparative study 3.2.3 of several classification

techniques is performed to act as an assessment evaluator for subsequent implementa-

tions. 2-step methods using two different implementations (2-Step Naive Bayes classifier,

and a 2-Step SVM classifier) are found in 3.2.4 and 3.2.5. Finally techniques are evalu-

ated for performance 3.2.6, with the optimal method being applied in a supplementary

case study of MRI negative cases 3.2.7 and an additional experiment using this tech-

nique to conduct comparison for classification using T1, T2 and FLAIR acquisitions

3.2.8. Chapter 4 details the conclusion and discusses possible future work.



Chapter 2

Background Information

2.1 Software

Research was conducted on an Ubuntu operating system using R, MATLAB in combi-

nation with SPM (Statistical Parametric Mapping), and FreeSurfer software packages.

FreeSurfer Neuroimaging analysis software is freely available and developed specif-

ically for processing brain MR images and quantifying Surface Based Morphometry

(SBM). FreeSurfer v5.3.0 ([DFS99][DS93] [FD00] [FLD01] [FSB+02]; [FSvdK+04][FSD99]

[FVDKD+04] [HJS+06] [JCG+06]; [SDB+04] [RRF10][RSRF12]) was employed for pre-

processing T1-weighted images for all cases and controls in order to perform cortical

reconstruction, produce anatomical labelling and structure details, and to co-register T2

and FLAIR scans to T1-weighted images. The OpenMP flag was used to run subject

processing on 4 cores, resulting in a runtime of approximately 6-9 hours per subject. As

a brief overview of the FreeSurfer pipeline, given a T1 weighted image, the native resolu-

tion is interpolated to 1mm3 isotropic voxels, this is followed by intensity normalization,

skull stripping using a watershed algorithm [SDB+04], volumetric labeling, white matter

segmentation, surface extraction, surface atlas registration, and surface labeling [Per07].

FreeSurfer uses .mgz, a file type unique to the software that is similar to nifti (a stan-

9
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dard file format used to save volumetric MRI data), to store compressed high-resolution

structural data and other information that may be overlaid on the structural volume.

The annotation files are output with the .annot extension. FreeSurfer supplied scripts

were used for loading these volumes into MATLAB.

MATLAB was selected for implementation of preliminary experiments, and pre- and

post- classification data processing due to its built-in imaging capabilities, as well as the

bidirectional capacity to read and write FreeSurfer generated volume and surface data.

The SPM (Statistical Parametric Mapping) software is a suite of MATLAB developed

for neuroimaging that was additionally employed for the processing of FLAIR and T2

images.

Due to the size of the data considered in experiments, performing classification in

MATLAB was not a viable option. Thus, R (v3.4.1) was used to implement classifica-

tion techniques. R is an open-source system of programming for statistical computation

and data mining applications. The program can handle large-scale data, and the CRAN

(Comprehensive R Archive Network) repository offers a large library of additional mod-

ules, including numerous predictive modelling packages, that can be used in conjunction

with R.

2.2 Data Description

Data is available as Digital Imaging and Communications in Medicine (DICOM), a stan-

dard format in medical imaging. The volumetric T1-weighted, T2-weighted, and FLAIR

imaging was acquired on 3 Tesla (3T) MRI in 32 children with focal epilepsy having

subtle lesion that was suspected to be FCD (MRI positive). The mean age of the pa-

tients was 11.73 years. Subjects were supplied labelled with a format NL0**. Subject

NL037 was omitted due to error at the acquisition stage. An additional 4 cases of MRI-

negative subjects were also included for a secondary experiment. All patients underwent
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epilepsy surgery resection and had post-operative Computed tomography (CT) or volu-

metric T1 MRI. Healthy control data was acquired for 13 children for which T1-weighted,

T2-weighted, and FLAIR images were available. Sample images are displayed in Figure

2.1 and Figure 2.2.

(a) Axial (b) Coronal

(c) Sagittal

Figure 2.1: Sample T1-weighted acquisition. (a) displays the axial slice, (b) the coronal

slice and (c) the sagittal slice of the T1 acquisition of subject NL004.

The MRI-positive patient case data including ILAE (International League Against

Epilepsy) surgical outcome, histology information, and suspected lesion location us-

ing FreeSurfer labels relating to pre-surgery neuroradiological work-up reports can be

found in Table 2.2. ILAE Surgical outcome refers to a scale from Class I to V (Class

I: Completely seizure free; Class II: Only auras, no other seizures; Class III: 1-3 seizure
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days/year; Class IV: 4 seizure days/year - 50% reduction in baseline number of seizure

days; Class V: <50% reduction in baseline number of seizure days - 100% increase in base-

line number of seizure days) detailing patient improvement following surgical resection

[WBF+01]. Details are obtained from histology reports made by pathologists examining

resected brain tissue post-surgery under a microscope to identify the type of lesion. MRI-

negative details are found in Table 2.3. The location of lesion in MRI-negative patients

was identified using post-surgical resection imaging. The brain can be coarsely labelled

using 8 possible locations (4 per hemisphere): right and left frontal, temporal, parietal,

and occipital. Fine labelling corresponds to the brain being labelled to 70 possible loca-

tions, 35 for each hemisphere (refer to Figure 2.3 and Table 2.1). The histology reports

supplied labels were corresponded to anatomical labels derived using FreeSurfer. Note

that the listed label titles in Table 2.1 correspond to the FreeSurfer default naming and

the insula falls under both the frontal and temporal lobes.
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(a) (b) (c)

(d) (e)

Figure 2.2: Pre-surgery and post-surgery supplied modalities. Row 1 displays pre-surgery

supplied imaging sequences: (a) T1-weighted, (b) T2-weighted, and (c) FLAIR. Row 2

presents post-surgery supplied modalities with resected regions visible: (d) T1-weighted

and (e) CT.
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(a) (b)

Figure 2.3: Left hemisphere fine labelling using FreeSurfer labels.

Frontal Parietal Temporal Occipital

superiorfrontal precuneus inferiortemporal rightcuneus

rostralmiddlefrontal inferiorparietal bankssts rightlateraloccipital

caudalanteriorcingulate isthmuscingulate entorhinal rightlingual

caudalmiddlefrontal postcentral fusiform rightpericalcarine

lateralorbitofrontal posteriorcingulate middletemporal

medialorbitofrontal superiorparietal parahippocampal

paracentral supramarginal superiortemporal

parsopercularis temporalpole

parsorbitalis transversetemporal

parstriangularis insula

precentral

rostralanteriorcingulate

frontalpole

insula

Table 2.1: Coarse and fine labelling
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Case

label

ILAE

Surgical

Outcome

Histology Location of lesion

R-right; L-left

NL001 II Non-specific gliosis L Superior temporal, Middle

temporal, Temporal pole

NL002 I FCD type IIA R Inferior temporal, Fusiform

NL003 I FCD type IIA L Superior frontal

NL004 I FCD type IIB L Inferior frontal, Fusiform

NL005 I Non-specific gliosis R Precentral

NL007 I FCD type IIB L Insula

NL008 I non-specific gliosis L Parsopercularis

NL009 III Oligodendrogliosis L Temporal pole, Superior temporal,

Middle temporal

NL010 II Non-specific gliosis L Superior frontal

NL011 I Oligodendrogliosis L Parahippocampal, Fusiform

NL012 I Oligodendrogliosis R Lateral orbital frontal, Medial

orbital frontal

NL013 I FCD type IIB R Inferior parietal, Lateral occipital

NL016 III Non-specific gliosis L Temporal pole, Superior temporal,

Middle temporal

NL017 I Oligodendrogliosis L Temporal pole, Superior temporal,

Middle temporal

NL018 I Oligodendrogliosis L Superior frontal, Rostral middle

frontal, Caudal middle frontal,

Parsopercularis, Parsorbitalis,

Parstriangularis, Lateral Orbitofrontal
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NL019 I Non-specific gliosis L Temporal pole, Superior temporal,

Middle temporal

NL020 I FCD type IIB R Precentral, Rostral Middle frontal,

Caudal Middle frontal

NL021 I FCD type IIA L Superior frontal

NL022 III FCD type IIA R Superior frontal, Rostral middle

frontal, Caudal middle frontal,

Parsopercularis, Parstriangularis,

Lateral Orbitofrontal

NL023 I FCD type IIB L Postcentral

NL024 I Non-specific gliosis L Paracentral, Posterior cingulate

NL026 I Oligodendrogliosis R Superior frontal, Rostral middle

frontal, Caudal middle frontal,

Parsopercularis, Parstriangularis,

Lateral Orbitofrontal

NL027 III FCD type I R Transverse temporal, Superior

temporal, Middle temporal, Inferior

temporal, Inferior parietal, Lateral

occipital

NL029 I FCD type IA L Transverse temporal, Superior

temporal, Middle temporal, Inferior

temporal, Fusiform, Parrahippocampal

gyrus, Lingual Pericalcarine, Cuneus,

Lateral occipital

NL031 V FCD type IB L Temporal pole, Superior temporal,

Middle temporal
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NL032 IV Oligodendrogliosis L Temporal pole, Superior temporal,

Middle temporal

NL033 I FCD type I L Superior frontal, Rostral Middle

frontal, Caudal Middle frontal,

Parsopercularis, Parstriangularis,

Lateral Orbitofrontal

NL035 V FCD type I R Precuneus

NL036 I FCD type IIA R Superior frontal, Paracentral

NL037 IV FCD type IIB L Precentral, Superior frontal

NL038 I FCD type IIA L Temporal pole, Superior temporal,

Middle temporal, Inferior temporal,

Transverse temporal

NL039 I FCD type IIB L Precentral, Postcentral, Superior

parietal, Supramarginal

Table 2.2: MRI-positive data

Case

label

Location of lesion

R-right; L-left

NL041 R Precentral, Postcentral, Parsopercularis, Parstriangularis, Middle

temporal, Inferior temporal

NL042 L Postcentral

NL043 R Superior frontal

NL044 L Middle temporal, Inferior temporal, Postcentral, Superior parietal

Table 2.3: MRI-negative data
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2.3 Methods of Measuring Performance

Standard classification performance evaluation utilizes sensitivity (Eq. 2.1) and speci-

ficity (Eq. 2.2) measures. Sensitivity measures the true positive probability and speci-

ficity the true negative probability.

Sensitivity =
TP

TP + FN
(2.1)

Specificity =
TN

TN + FP
(2.2)

where TP stands for the true positive count, FN stands for the false negative count,

TN stands for the true negative count, and FP stands for the false positive count. The

confusion matrix is presented in Table 2.4.

PREDICTION

Positive Negative

ACTUAL
Positive TP FP

Negative FN TN

Table 2.4: Confusion matrix. Visualization of classification performance using a confusion

matrix to depict relationship between predicted results and actual values, given class

labels Positive and Negative.

Thus we require some standard for evaluating what the actual values are. Lesion lo-

cations corresponding to true regions were derived from pre-surgical radiological reports.

Sample cases for FCD patients NL008 and NL029 are presented respectively in Figure 2.4

and Figure 2.5. With regards to classification, if the structures selected either partially

or wholly colocalize the true lesion in a patient with FCD, we consider the lesion to be

identified.
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Figure 2.4: Lesion Labelling Patient NL008 on inflated and pial surfaces

Figure 2.5: Lesion Labelling Patient NL029 on inflated and pial surfaces

Subjectwise sensitivity (Eq. 2.3) is the sum of all FCD subjects in which a lesion is

correctly identified divided by the total number of FCD subjects. Subjectwise specificity

(Eq. 2.4) is the sum of all control subjects in which no lesion is identified divided by

the total number of control subjects. A structure is considered lesional if it was specified
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in the pre-surgical radiological report for the subject. Lesional sensitivity (Eq. 2.5) is

measured as the sum of all structures labeled lesional by the classifier for all subjects

divided by the total structures labelled lesional for all subjects in pre-surgical reports.

Lesional specificity (Eq. 2.6) is the sum of all structures labeled non-lesional by the

classifier for FCD subjects divided by the total structures labelled non-lesional for FCD

subjects in pre-surgical reports. We will consider subjectwise sensitivity and subjectwise

specificity as our key performance measures, and use the lesional sensitivity and lesional

specificity as supplementary information for analysis [ACB+03]. Mathematically defining

these measures, for NF number of FCD patients and NC number of healthy control

subjects,

Subjectwise Sensitivity =

∑NF
i=1[(TP )i > 0]

NF

(2.3)

Subjectwise Specificity =

∑NC
i=1[(TN)i > 0]

NC

(2.4)

Lesional Sensitivity =

∑NF
i=1(TP )i∑NF

i=1[(TP )i + (FN)i]
(2.5)

Lesional Specificity =

∑NC
i=1(TN)i∑NC

i=1[(TN)i + (FP )i]
. (2.6)

In these equations (TP )i is the true positive relating to the i-th subject. The other quan-

tities are similarly defined. We are predominantly interested in subjectwise performance,

that is to say, a technique’s ability to not select any lesional structures in control cases

and partially/wholly colocalize lesions in FCD patients. However the extent of the lesion

can differ vastly from case to case, as depicted in Figures 2.4 and 2.5. For this reason,

we incorporate lesional measures as additional measures to overcome the subjectwise

measures limitations in localization.
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Figure 2.6: ROC curves and AUC. A ROC curve examines the trade-off between clin-

ical sensitivity and specificity for each possible threshold cut-off. Computing the AUC

evaluates the accuracy of a test. Sample AUC curves are presented. The AUC may fall

between 0.5 and 1, with satisfactory values falling between 0.7 and 1. The closer the

AUC value is to 1, the more accurate the test.

Parameter selection plays a vital role in many image processing techniques and im-

pacts the sensitivity and specificity. Thus, selecting optimal parameters to improve per-

formance is an important consideration (Figure 2.7). A receiver operating characteristic

(ROC) curve is a standard tool in medical decision making and can be used to improve

predictive performance through criterion selection. The ROC curve plots the false pos-

itive fraction (expressed by 100%-specificity) against sensitivity for different values of a

parameter and allows the user to select the optimal decision threshold. Each point on

an ROC is a representation of a selected cut-off threshold. The Area Under the ROC

Curve (AUC) is used to measure the accuracy of the test. An AUC=1 implies perfect

separation, and AUC=0.5 coincides to a diagonal line and implies the test is worthless.
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A satisfactory AUC falls within the range of 0.70 to 1. Thus the closer the curve is to the

upper left corner, the better the performance (Figure 2.6). ROC curves offers a graphical

representation of the trade-off between clinical sensitivity and specificity and the AUC

indicates if the test itself is beneficial (discriminative power) [Eke12]. The AUC can be

computed using the trapezoid method such that

AUC =
n∑
k=1

(Xk+1 −Xk)
(Yk + Yk+1)

2
(2.7)

where for the function f(X) and n = 1, ..., k segments, (Xk+1 −Xk) denotes the spacing

between a consecutive pairs of points with Yk = f(Xk) and Yk+1 = f(Xk+1).

Figure 2.7: Criterion selection. Consider a binary classification problem with class labels

lesional and non-lesional. The diagnostic performance is measured by the ability to

distinguish these two groups from one another. The value of the criterion acts a decision

threshold. Cases to the right of the line are identified as lesional, and cases to the left

non-lesional.

Youden (1950) presented the Youden index (Eq. 2.8) as a means of selecting the

optimal criterion for trade-off. J can be expressed graphically as the maximum vertical

distance between a diagonal line and the ROC curve. The associated parameter for the
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J is selected as optimal

J = max{sensitivityc + specificityc − 1} (2.8)

for possible criterion values c, with the aim to maximize the J value [You50][Eke12].

2.4 Common Features of T1-weighted MRI – Corti-

cal Thickness and Blurring of Gray-White Mat-

ter Interface

High-resolution medical imaging depict considerable detail and enables in-vivo morpho-

metric analysis. Cortical thickness and blurring at the gray-white matter boundary are

two of the established features of Focal Cortical Dysplasia lesions on volumetric T1-

weighted images [HDVA+08]. Additionally, they are advantageous due to the fact that

models derived from these features operate in three dimensions. The implication being

that information can be considered simultaneously from consecutive slices and multidirec-

tionally. This is a benefit over standard radiological analysis which may use slice-by-slice

visualization [ACB+03].

Cortical thickness serves as a useful measurement in offering insight in regards to

anatomical abnormality [HDVA+08] [ACB+03]. The cortical thickness in a normal brain

can range from 2 mm to 4 mm, with the average falling somewhere between 2.5 and

3 mm. Standard variations in cortical thickness may be attributed to several factors

including location in functionally unique regions, or differences in cell types [HDVA+08].

In cases with lesions, the transition from gray- to white- matter loses distinction and

may be less visible. For this reason, blurring at the interface between the gray and white

matter is a common feature characterized by a “fogginess” on volumetric T1-weighted

MRI. Enhancing visualization of this boundary using modern post-processing can flag

regions lacking distinction and has produced improved detection rate [HGF+05].
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2.5 Classification Techniques

2.5.1 Introduction to Classification

In classification, given a set of input variables, that influence one or more outputs, the

aim is to predict these outputs. We will refer to these inputs as features, and the outputs

as class labels.

Take X to be a n-dimensional vector containing feature data such that X = (X1, ..., XN).

Xn refers to the n-th feature. Let C = (C1, ..., CM) be a vector of class labels. Cm refers

to the m-th class label. If M = 2 it is a binary classification problem. We seek to use

a classifier to map the feature data to the class data. In unsupervised learning, initial

known labels are not available and inferences are made solely off input to express pat-

terns and associations amongst the feature measures. We will be considering supervised

classification techniques, where predictions of new feature vectors are made on the basis

of known pairings of feature vectors and class labels.

A training set is employed to build the model, and a testing set is used for valida-

tion. The training set contains N paired sets of features and response classes, and the

testing set contains feature samples alone with class labels to be determined. Splitting

data into model training and validation sets ensures that prior knowledge is not directly

passed to predictions. This is referred to as the hold-out method and is the simplest

cross-validation implementation. In cross-validation, some of the data is omitted from

the training set and instead used for testing purposes. In an ideal situation the train-

ing and testing samples would be two unique sets, however when sufficient data is not

available to do so, other techniques are employed. In K-fold cross-validation the data

is split into K approximately equal portions, and for each data portion, the data is fit

to the other K − 1 sets. This process is repeated for each k = 1, 2, 3, . . . , K. When

K = N the process is referred to as leave-one-out cross-validation. Leave-one-out cross-

validation is higly unbiased, however can be computationally expensive and have high
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variance [HTF09] [Mur12].

In medical imaging, classification is an especially useful tool for objects that may not

be simply represented, as is the case with FCD lesions [Suz12]. Computational models

to improve visual lesion detection combining recognized features of FCD with compli-

mentary textural features have produced positive results [ACB+03] [AWG+17]. Directly

using voxel information, as is done when computing textural features, can circumvent

errors that may arise when using values are computed from segmented regions and has

the potential to outperform other methods [Suz12] [HS+73]. When classifying images,

texture is an especially significant distinguishing attribute to consider. We seek to employ

classification techniques to combine the morphometric and textural information to select

lesional locations and compare performance of classifiers. We will consider K-Nearest

Neighbours, conditional inference trees, random forests, support vector machines and

Naive-Bayes Classifiers.

2.5.2 k-Nearest Neighbour (k-NN)

The general assumption of k-Nearest-Neighbours (k-NN) is that similar inputs will result

in similar outputs, and we can classify data by utilizing a measurement of this simi-

larity. A non-parametric method, k-NN does not fit data to a model, but is instead

memory-based. It is not necessarily a machine learning algorithm but a pattern recogni-

tion method. To employ k-NN for classification, given training data with known labels

and a new unlabeled test input X, a similarity measure is used to identify the k nearest

points X1, ...,Xk in the training set. Among these k entries, the most common class label

is selected to be the predicted label for the new data instance, Figure 2.8. In the event

a tie for the majority vote occurs, it is broken at random.
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Figure 2.8: k-NN example for k = 5. Here were have a training set and two class labels

visually presented as black and red. For a new unlabelled data (represented in blue) we

seek the 5 nearest neighbours. The class is selected using a majority vote, in this case

leading to a label of red.

k-NN is easy to implement, and works well in cases where the decision boundary

between data classes is irregular. A caveat of the method is that it requires retention

of the complete training set. Variations can be made to parameter k and the similarity

measure (i.e. Euclidean). The effect of k on the results is a key consideration. A larger

k results in a smoother boundary effect and reduces the effect of noise. As the balance

between classes becomes most disparaging, a larger k may not necessarily yield better

results. If k is too large it will always predict the majority class. This particularly

becomes an issue in unbalanced class problems, where the number of labels for one class

is substantially larger than the other [HTF09] [Mur12] [HHKT16].

Selecting an optimal k is tied to the goals of our model and the cost of misclassification

of each class should also be taken into account when selecting k. Measuring the effect

of k on accuracy, A = TP+TN
TP+FP+FN+TN

, presents an exponential relationship, with larger

k values positively impacting overall performance. However, aggregating class-labelling

performance of both classes in real-world applications is generally an incorrect approach.
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The increase in accuracy is result of predicting the majority class. The cost of correctly

classifying the majority class label is at a cost of misclassifying the minority class label,

but the two are effectively cancelled out in aggregation [HV03].

The manner in which the distance between the unlabeled test data and training data

is measured may be modified in implementation. Given two points in a feature space

there are several possible distance measures including but not limited to the Euclidean,

Minkowski , Chi-Square, and cosine similarity measure [MGU02] [MSD81] [HHKT16].

In a study comparing the performance of k-NN on the basis of these measurements, it

was found that there was no clear single similarity measure that outperformed given

categorical data, the Euclidean and Minkowski distance function performed best overall

given numerical data, and the Chi-Square distance measure performed best for mixed-

type data [HHKT16]. Based on these results, and the nature of the features to be derived

from our supplied dataset, the ideal measure would be the Euclidean distance measure

(Eq. 2.9). For further details of the other possible measures refer to [HHKT16].

d(x, y) =

√∑m
i=1(xi − yi)2

m
(2.9)

2.5.3 Decision Trees

Before we discuss conditional inference trees and random forests, we will first offer an

introduction to decision trees. Decision trees may be employed for classification or re-

gression on the basis of variable properties. The traditional structure presents the tree

as inverted, with the root at the top and the leaves, or nodes at the bottom Figure 2.9.

The tree begins with a single root node, which functions as the starting point. From

here, the initial split into two or more branches occurs producing nodes. This process

of splitting continues to occur until reaching a termination node, or leaf, containing the

decision. Non-leaf nodes are associated with a decision question, which serves to produce

the subsequent splits by determining the divisions. While a decision tree may split into
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multiple branches, they can also be limited to splits of two, also referred to as binary

decision trees. Binary splits is better in practice to limit complexity. We will be focusing

on binary classification trees [Mwi13].

Figure 2.9: Decision tree structure

The root node contains the complete learning sample L at the top of the tree and

every node can be described as a subset of the data. For a binary classification prob-

lem (M = 2), given an outcome variable C = {C1, C2} and a input feature vector

(X1, . . . , XN), we seek to establish a relationship between the former and the latter. We

can express this relationship using conditional probability, defined as P (A|B), which is

the probability of an event A occurring given that event B has already occurred. In the

case of binary classification, the relationship between input features and class labels is

P (C = CM |X1, . . . , XN). A node is a subset of L, and may be terminal or non-terminal.

Nonterminal nodes, or parent nodes, are those that will split into two daughter nodes.

The splits are based on a Boolean condition on the value of an attribute variable, in

response to a Yes/No data query i.e., Is the condition satisfied or not satisfied by the

observed value? All observations contained in L meeting conditions for the specified

variable drop down into the respective daughter node, with those that do not meet the

condition dropping into the other. Terminal nodes are those that do not split, and are

assigned a final class label. The stopping criteria may be caused by an absence of vari-

ables to split on (i.e. one observation in the node subset), or when further divisions do
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not improve results. To use a tree for classification, a series of questions are asked in

sequence, with the termination point, being the prediction. Given a data of unknown

class label, attribute properties are used to travel through successive nodes of the tree,

before finally assigning the class label corresponding to the terminal node. There may

be more than one nonterminal node associated with the same attribute property, as well

as more than one terminal node associated with the same class label. The complete set

of all terminal nodes is referred to as the partition. The process of constructing a tree by

the choice to split or not split each node into two daughter nodes is known as recursive

partitioning. With recursive partitioning we seek to produce the terminal nodes that are

homogeneous, although it should be noted that while complete homogeneity of terminal

nodes is ideal, it is rarely achieved in real application.

For a supplied dataset there are countless possible splits. Not only must we make a

decision on which attribute to split on the basis of, but also the manner of partition itself.

With each split the future pool of possible splits decrease, however a future split may

still occur using an attribute previously portioned on. For a nominal attribute there are

2r−1−1 possible splits where r is the number of levels [ZS10]. For an ordinal attribute of

s distinct values, there are s−1 possible splits [ZS10]. Consequently, we require a means

by which to measure goodness of a split. We seek to asses the homogeneities (impurities)

of two daughter nodes [Ize08] [DHS12].

Our concern pertains to a binary outcome, thus for a node τ , the homogeneity of

the node is defined by the probability P{C = CM |τ} for M = 1, 2. The most ho-

mogenous nodes are those with only one class of outcome such that the probability

P{C = CM |τ} = 0 or 1. The least homogenous nodes are those with equal like-

lihood of outcome of either class label such that the probability P{C = CM |τ} = 1
2
.

The impurity function is defined formally as i(τ) = φ(P{C = CM |τ}) where φ is a

function with the properties: (i) φ ≥ 0 and (ii) for p ∈ (0, 1), φ(p) = φ(1 − p) and

φ(0) = φ(1) < φ(p). Some common choices of assessing node impurity include the Bayes
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or the minimum error (φ(p) = min(p, 1 − p)), the Gini index (φ(p) = p(1 − p)), and

entropy (φ(p) = −p log(p)− (1− p) log(1− p)) [where 0 log 0 = 0] [ZS10].

An issue with decision tree is that with each split, future decisions for splits are made

with a smaller sample. Terminal nodes may contain a subset too small to make inferences

from. For this reason the tree may not be the best in terms of being representative of the

data as a whole. Additionally, for most real-world applications, the constructed tree is

too complex to be helpful. Pruning is a manner of improving accuracy and diminishing

complexity, where a larger tree is generated initially before being reduced. To do so, it

selects a subtree that offers the most predictive power and is least susceptible to noise.

Decision trees efficiently present information, and handle outliers well, but there is a

trade-off between the model’s predictive performance and its simplicity [Ize08] [DHS12]

[Mwi13].

2.5.4 Conditional Inference Tree

Although information measures are employed when deciding on the manner of splits in

traditional decision trees, the actual statistical significance of the improvement is neces-

sary to differentiate useful splits. For individual decision trees two key shortcomings are

overfitting and variable selection bias. The former can be addressed by pruning, alterna-

tively, [HHZ06] presented conditional inference trees to address the need for a statistical

approach to recursive partitioning thats accounts for the distributional properties of the

measures.

Conditional inference trees improve upon decision trees by correcting for issues in

overfitting and feature selection biases through conditional distribution that measure the

relationship amongst covariates and response variables [Ize08] [HHZ06] [Lev15]. They

incorporate p-values into stopping and selection criteria and do not rely on post-hoc

pruning [SKO14]. This method is biased towards variables that offer many possible

splits. It aims to find the strongest association between the class label and attributes
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and conducts tests for association using hypothesis tests. Selection of attributes and

optimal split are independent of one another. Using binary recursive partitioning, the

method begins by testing for association between each independent attribute and the

response variable, before selecting the covariate with the strongest relationship. Simi-

lar to standard decision trees, a binary split is performed on this attribute, partitioning

the dataset into two subsets using the binary predictor. The process is repeated for

each subset until there are no longer any attributes associated with the outcome for a

supplied statistical significance level using p-values. Attributes that will be partitioned

are selected on the basis of a significance test as opposed to selecting the attribute that

maximizes an information measure as is the method in standard decision trees [Ize08]

[HHZ06] [Lev15].

2.5.5 Random Forests

A caveat of decision trees is that they can be an oversimplification model of the data.

They can also be instable, as represented by minute perturbations to data (i.e. removal

of a subset of the data) resulting in changes in the outcome. Individual trees may not be

strong models, but can be improved when combined. Ensemble approaches seek to com-

bat such issues and are less prone to instability. The random forest is a classifier made

up of a collection of t tree structured classifiers generated from independent subsets of a

given dataset. New data is classified using a majority vote of the ensemble of classifiers

[ZW09][Bre01] .

Combining multiple decision trees to create random forests, counteracts this insta-

bility, and makes it robust to outliers. It also performs well with binary classification

problems with unbalanced classes. Each of the individual trees are overfit, however ran-

dom forests omit the pruning step that may be necessary in complex decision trees.

Instead, it uses multiple independent trees that use different subsets and fit the data

differently. For this reason, the random forest algorithm is comparatively less biased.
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Random forests are especially appropriate when the input variables outweigh the obser-

vations, however it is also computationally intensive [Bre01].

The algorithm begins by selecting a randomly sampled subset of data (bootstrap

sample). Recursive partitioning is performed using a randomly sampled selection of at-

tributes at each split to generate complete trees. We can alternatively omit a random

subset of attributes at each split, and use the complete set, a variation referred to as

bagging [Bre01]. The process is performed for a specified number of trees to generate a

forest with classification based on a majority vote of an ensemble of trees.

Selecting an optimal number of trees when constructing a forest seeks to produce a

peak trade-off between the predictive performance and computation time. Due to the

number of trees and their respective complexity, it is impractical to present them all.

There is, in fact, no globally accepted method of tree selection, however there has been

some work into seeking a viable option. [ZW09] explored mathematically selecting an

optimal number of trees in random forest generation. For a constructed forest the accu-

racy following the removal of each tree is measured, in order to identify which has the

minimal impact. For a forest F the accuracy is calculated as pF . Each tree is represented

by T . An N − 1 approach is taken, and the accuracy of the forest (pF−T ) is recomputed

for (F−T ) following the removal of each tree T . The difference between the original ac-

curacy and the accuracy following an excluded tree is computed for each T such that:

∆−T = pF − pF−T . Following this T p = arg min
T∈F

(∆−T ) is computed to select the tree with

the minimal difference. This paper explored the idea of starting with a random forest

constructed with a large number of trees and gradually selecting trees to be excluded

while maintaining performance. If a substantial increase in the number of trees is not

reflected by significant improvement to classification, it is usually a better option to go

with fewer trees.

[EAP11] advocated that reducing the variance of the tree ensemble selection method

by cross-validation to improve performance. They specify improved performance is di-
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rectly linked to diversity, which implies that in a good classifier the observations mis-

classified by each of the trees in the ensemble is unique to each tree. They presented

a method to adaptively model the tradeoff between diversity and accuracy. Ensemble

selection refers to the process of selecting individual classifiers from an original ensemble

that produce accuracy on par with the original ensemble, but with reduced time and

resource consumption. For an ensemble of size t trees, this involves examining a space of

2t−1. Standard random forest implementation omit pruning, however in their paper they

make a case for it. Selecting solely the most accurate individual classifiers to construct

an ensemble, or considering only diversity for pruning are not the best. It would appear

that the randomness reflected by the nomenclature of the algorithm can at times, work

against it, with individual trees being deemed weak predictors due to random variable

selection. The conclusion was that their method produced a relatively modest gain in

performance, however they could draw no general conclusion on the optimal trade-off.

[OPB12] generated multiple random forests with number of trees increasing exponen-

tially using base 2. They used Area Under Curve (AUC) of ROC curve, and percentage

of features used in each to perform analysis of results. The takeaway of their analysis

was a substantial number of trees may in some cases contribute significantly more to

computational cost rather than performance. In particular, they found in their analysis

that doubling the number of trees did not produce a significant difference (No significant

difference between any result when number of trees is changed from 128 to 256, 512 . . .

4096). However a significant change was seen at 64 trees relative to numbers preceding

it. Thus they suggested 64-128 trees as a possible optimal range given their results.

Evaluating the percentage of attributes used for classification, they saw an asymptotical

tendency to utilize all attributes, with all attributes beings used with 128 trees. There-

fore, an unwanted byproduct of random forests is a large forest may select unimportant

attributes. Selecting an appropriate number of trees when conducting a random forest

implementation necessitates consideration into a balance between significant performance
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improvement and computation time.

2.5.6 Naive Bayes Classification

By the Bayes’ Theorem we calculate posterior probability such that

P (A | B) =
P (B | A)P (A)

P (B)
.

This refers to the probability of event A occurring given that event B has occurred. Let

X to be a n-dimensional vector containing feature data such that X = (X1, ..., XN). Xn

refers to the n-th feature, and C = (C1, ..., CM) be a vector of class labels. Cm refers to

the m-th class label. We then seek to use a Bayes’ classifier to map the feature data to

the class data. We can express Bayes’ rule for our data as

P (Cm | X) =
P (X | Cm)P (Cm)

P (X)
.

For a test vector X, we estimate the posterior probability P (Cm | X) for each class m.

To classify X we choose the class label with the largest estimated posterior probability

such that

C = arg max
Cm

P (X | Cm)P (Cm)

P (X)
.

However, estimating P (X | Cm) is computationally expensive in execution. Consider a

discrete n-dimensional vector X with boolean variables. Estimating P (C) is a simple

task, however for P (X | C) we would need to estimate 2(2n − 1) parameters. The

Näıve Bayes Classifier is based on Bayes’ theorem with a class conditional independence

assumption. By this assumption, all predictor variables contribute independently to class

labels and any dependence between input variables is disregarded. Consider an example

given 2 features X1 and X2, thus

P (X1, X2 | Cm) = P (X1 | X2, Cm)P (X2 | Cm).

which by conditional independence is equivalent to P (X1 | C)P (X2 | C). The inclu-

sion of the assumption prevents computational complexity associated with generating
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the parameter vector. We can express the class conditional independence assumption

mathematically for N features as

P (X | Cm) = P (X1, X2, X3, ...XN | Cm) =
N∏
i=1

P (Xi | Cm).

For cases where the input features are continuous and class labels are discrete, a

modified version is followed. In such cases it is assumed that P (Xi | Cm) takes on a

normal Gaussian distribution. Thus the Gaussian Naive Bayes (GNB) is used such that

P (Xi | Cm) =
1√

(2πσ2
im)

exp
[−(Xi − µim)2

2σ2
im

]
.

Refer to [Mit05] [JMN13] for more information.

2.5.7 Support Vector Machines

Support Vector Machines (SVM) is a supervised learning model that selects an optimal

hyperplane to best separate two data classes. To do so it determines how to divide a

space through use of decision boundaries during training. New unlabelled points can be

tested for classification on the basis of where they fall relative to selected boundaries.

For now we will focus on use of SVM on separable data. The identification of the best

hyperplane is formed on the basis of the largest margin between two classes. The margin

is the maximum width of the slab parallel to the hyperplane that contains no interior

data points. The support vectors are the data points that are closest to the separating

hyperplane. Thus the goal becomes to maximize the margin, implying an optimization

problem.

Given data points xi in n-dimensional space, we set corresponding classes yi, where

yi ∈ {−1, 1}. Introduce the vector w̄ to the minimization model, such that w̄ is to be

perpendicular to the median plane (or rather the hyperplane). We can then express each

data points as a vector x̄ from the origin. Then the projection of the vector x̄ onto w̄ is

given by w̄ · x̄. The equation for any plane can be expressed as

w̄ · x̄− b. (2.10)
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Assume the two classes can be separated by a hyperplane given by w̄·x̄−b = 0. Equations

of the two planes representing the margin given respectively by

w̄ · x̄− b = 1 and w̄ · x̄− b = −1. (2.11)

Introduce constraint to ensure data points remain on exterior of margin:

w̄ · x̄i − b ≥ 1 and w̄ · x̄i − b ≤ −1. (2.12)

Given 2.12, we can combine these constraints by variable yi where yi = ±1 and is

evaluated for each point xi such that new constraint becomes

yi

(
w̄ · x̄i − b

)
≥ 1 with yi = ±1. (2.13)

Figure 2.10: Support Vector Machines. Let the green points denote data with class 1

labels and the blue points denote data with class 0 labels. We seek to identify the optimal

hyperplane separating the two data groups such that the margin is maximized. Support

vectors are the points that exist closest to the hyperplane.
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We want to maximize the margin (width between the two outlying planes). Consider

margins M1 = w̄ · x̄+ − b = 1 (associated with yi = 1) and and M2 = w̄ · x̄− − b = −1

(associated with yi = −1) (refer to Figure 2.10). Then the margin is given by

margin =

(
x+ − x−

)
· w̄

‖w̄‖

=

((
1 + b

w̄

)
− −1− b

w̄

)
· w̄

‖w̄‖

=
2

‖w̄‖
.

(2.14)

Thus we seek to maximize 2
‖w̄‖ which is equivalent to minimizing ‖w̄‖. Taking the problem

to be min 1
2
‖w̄‖2 for simplicity with later steps. Therefore the optimization problem to

maximize the margin is given by

min
1

2
‖w̄‖2 subject to yi

(
w̄ · x̄i − b

)
≥ 1. (2.15)

We can use Lagrange Multipliers to rewrite the problem without using constraints as

L =
1

2
‖w̄‖2 −

∑
i

αi

[
yi

(
w̄ · x̄i − b

)
− 1

]
. (2.16)

Taking the partial derivative with respect to unknown components (w̄ and b) and equating

to 0 respectively produces

∂L

∂w̄
= w̄ −

∑
i

αiyix̄i = 0 (2.17)

and

∂L

∂b
= −

∑
i

αiyi = 0. (2.18)

Equation 2.17 implies

w̄ =
∑
i

αiyix̄i (2.19)

and Equation 2.18 implies ∑
i

αiyi = 0. (2.20)
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Substituting these expressions (Eq. 2.19 and Eq. 2.20) into Eq. 2.16 we can rewrite L

such that

L =
1

2
‖w̄‖2 −

∑
i

αi

[
yi

(
w̄ · x̄i − b

)
− 1

]
=

1

2
(w̄i) · (w̄j)−

∑
i

αiyix̄i · (w̄j)−
∑
i

αiyib+
∑
i

αi

=
1

2

(∑
i

αiyix̄i

)
·
(∑

j

αjyjx̄j

)
−
(∑

i

αiyix̄i) ·
(∑

j

αjyjx̄j

)
−
∑
i

αiyib+
∑
i

αi

=
1

2

(∑
i

αiyix̄i

)
·
(∑

j

αjyjx̄j

)
−
(∑

i

αiyix̄i) ·
(∑

j

αjyjx̄j

)
+
∑
i

αi

=
∑
i

αi −
1

2

∑
i

∑
j

αiyiαjyjx̄i · x̄j

(2.21)

Therefore the problem can be seen as maximizing L =
∑

i αi −
1
2

∑
i

∑
j αiyiαjyjx̄i · x̄j

subject to
∑

i αiyi = 0 and αi ≥ 0 for i = 1, ...n. This produces the equation for our

training. Note that the optimization depends only on dot product of pairs of samples.

Recalling the decision rule we initially had (Eq. 2.13), and substituting in our expression

from 2.19 results in

yi

(∑
i

αiyix̄i · x̄− b
)
≥ 1 with yi = ±1. (2.22)

The implication is that the decision rule depends on pairs of samples. Thus far we

have examined the problem necessary to run the training portion of algorithm in order

to deduce the optimal hyperplane. Classification is a simple process of considering new

points and examining where they fall relative to the hyperplane. SVM is a primarily

two class classifier, however multi-class problems can be performed by a one versus all

approach. One would separate one class for each N classes and combine to form a multi-

class solution. We were considering linearly separable cases for developing the model.

For nonlinearly separable cases we would need to perform a transformation to take the

data to a higher dimension where a linear hyperplane could be selected for separation.

Take this transformation to be φ. Since our maximization only depends on dot products
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we can transform our dot product φ(x̄i) · φ(x̄) which we equate to some kernel function

K(x̄i, x̄). This transformation takes the data into a more convenient space. It is not

necessary to know the transformation itself. Selecting an appropriate kernel function can

be a difficult task. There are many possible kernel functions such as polynomial kernels,

and the Gaussian Radial Basis function kernel [HDO+98] [SC08] [SS02].
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2.6 Introduction to Textural Analysis

Texture is a significant visual input and while easy to recognize distinctions in the feature

visually, it can be challenging to define. Physical surface qualities can manifest them-

selves as texture. Comparing healthy and non-healthy brain tissue on MRI, there are

variations in intensity in both. Thus, finding the recurring patterns within these varia-

tions becomes the objective as a means of differentiating the two. In order to recognize

texture in images we seek to examine spatial variation in gray level values in order to

explore texture properties [TJ+93]. To quantify texture we can employ Gray-Level Co-

occurrence Matrices (GLCM) to produce textures features as first proposed by [HS+73].

A co-occurrence matrix, or co-occurrence distribution, expresses the frequencies of co-

occurring values over a specified offset of adjacent locations. Using a gray-scale image a

GLCM can be derived. A co-occurrence matrix is generated for each voxel using some

specified surrounding region about each of the voxels and accounting for intensity pair-

ings (Figure 2.11). From these co-occurrence matrices, features can be computed that

are mapped back to voxel positions [ACB+03]. The co-occurrence matrix can divulge

details about spatial distribution of gray levels. In medical imaging, automated extrac-

tion of texture features for use in classification processes to identify abnormal tissue is a

well-explored application [TJ+93].

Given an 2-D input image I(x, y), consider a patch of size M ×N taken from image

I. Note that the intensity values of this patch can be represented by f such that f(m,n)

is the intensity at sample row m, column n of specified patch (corresponds to sampling

image I(x, y) within the patch). Let the displacement distance vector (the offset) be

d = (4x,4y). Let the number of gray levels, the scale factor for intensity values of the

image I, be represented by G. The co-occurrence matrix generated will be of size G×G.

Binning of intensity values to reduce gray levels is a standard protocol, to avoid issues to

temporary data storage with images with a large number of unique intensity values. We

take the co-occurrence matrix to be P [i, j] (i, j ∈ {1, ..., G}). For each entry of P [i, j],
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counts number of times that pairs of gray levels i and j occurs in pixels separated by

distance d. Thus

P [i, j] =

[
1

(M −4x)(N −4y)

]N−4y∑
n=1

M−4x∑
m=1

A(m,n)

A(m,n) =


1, if f(m,n) = i and f(m+4x, n+4y) = j

0, otherwise.

Note that the elements of P [i, j] are normalized, thus in reality GLCMs contain probabil-

ities as opposed to counts [ZRP+11] [TJ+93] [JKS95] [A+08]. The offset can alternatively

be represented using the distance and the angle. However, a single GLCM may not be

always serve as a sufficient descriptor. Solely using a horizontal offset may lack sensitiv-

ity to textural attributes present in the vertical direction. Thus it is standard practice

to produce multiple GLCMs using an array of offsets and co-occurrence matrices can

be recomputed for multiple displacements. A possible way of doing so is by generating

symmetric GLCMs. As previously defined, the co-occurrence matrix is not symmetric,

however symmetric matrices as described in Haralick’s original paper ([HS+73]) may be

computed (Refer to Figure 2.11). Computing symmetric matrices allows discretized di-

rections to be reduced. In 2-D, the 8 discretized directions can be collapsed to 4 possible

spatial directions [EDA+15]. Consider a specified pixel distance of D, a possible method

of generating a symmetric co-occurrence matrix from a 3-Dimensional neighbourhood

of a given volume is to sample from D units in each direction. Thus there are 26 dis-

cretized directions which can be collapsed to 13 spatial directions [ACB+03]. Thus, we

can express the offsets using this method in 3-Dimensions as

[0, D, 0], [−D,D, 0], [−D, 0, 0],[−D,−D, 0], [−D,D,−D], [−D, 0,−D],

[−D,−D,−D], [0,−D,−D], [D,−D,−D], [D, 0,−D], [D,D,−D], [0, D,−D],

[0, 0,−D].
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Figure 2.11: Gray Level Co-occurrence Matrix (GLCM) generated in 2-D. Given a region

of interest, a GLCM can be produced by tallying the instances of voxel intensity pairings

separated by a specified offset (Distance between pixel of interest and neighbour). Con-

sider an area selected from an axial slice of a T1-weighted image. We seek to generate a

Non-symmetric GLCM, and a Symmetric GLCM for the same region, using G = 4 gray

levels, indicating that our resulting GLCMs will be 4 by 4 matrices. We will employ an

offset of [0,1], which implies a shift of 1 to the right. To generate a symmetric matrix we

count a pairings of the same levels in both directions. We then examine the occurrence

of each pairing of levels using the defined offset and fill in the array. Finally the GLCM

requires normalization, done by dividing each component by the sum off values.
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From the co-occurrence matrices we can compute some possible textural features as

follows [HS+73] [ACB+03], [A+08]:

Angular Second Momentum
∑G

i=1

∑G
j=1{P [i, j]}2

Entropy −
∑G

i=1

∑G
j=1 P [i, j]log{P [i, j]}

Correlation
∑G

i=1

∑G
j=1

ijP [i,j]−µxµy
σxσy

Contrast
∑G−1

n=0 n
2{
∑G

i=1

∑G
j=1 P [i, j]} , |i− j| = n

Homogeneity
∑G

i=1

∑G
j=1

P [i,j]
1+(i−j)2

Variance
∑G

i=1

∑G
j=1(i− µ)2P [i, j]

Sum Mean 1
2

∑G
i=1

∑G
j=1(iP [i, j] + jP [i, j])

Inertia
∑G

i=1

∑G
j=1{i− j}2P [i, j]

Cluster Shade
∑G

i=1

∑G
j=1{i+ j − µx − µy}3P [i, j]

Cluster Tendency
∑G

i=1

∑G
j=1{i+ j − µx − µy}4P [i, j]

Max Probability maxGi,j=1{P [i, j]}

Inverse Variance
∑G

i=1

∑G
j=1

P [i,j]
(i−j)2 , i 6= j

Table 2.5: Textural features

with Px(i) =
∑G

j=1 P [i, j], Py(j) =
∑G

i=1 P [i, j], µx = mean of Px, σx = standard

deviation of Px, µy = mean of Py, σy = standard deviation of Py, and µ = mean value

of P .

The attributes are reflective of different traits in the image, which in the context of

lesion identification, can contribute meaningful information to analysis. Angular Second

Momentum (ASM) is a strong measure of uniformity. A homogeneous region will contain

a small range of gray levels, producing a GLCM composed of few non-zero values, albeit

high ones. Thus, the sum of squares of such a case would be high [A+08]. Entropy

acts as a measure of randomness in intensity. Low measures occur with inhomogeneous

regions, while high entropy implies homogeneity [A+08] [GW02]. The Correlation exam-
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ines gray level linear dependence of considered voxels [A+08]. Contrast considers local

intensity variation by examining differences between neighboring voxels. The contrast

value increases with higher magnitudes of variation. It favours contributions of P [i, j] for

which i 6= j, thus a contrast of 0 indicates no difference between a reference voxel and

a neighbour voxel [A+08] [HS+73]. Homogeneity, also known as the inverse difference

moment, is the opposite of contrast, with high values indicting the presence of smooth

texture with minimal variation. On the other hand, low values imply an inhomogeneous

images while relatively higher values occur with homogeneous images [A+08] [HS+73].

Elements differing from the average value are weighted higher with Variance. The op-

posite is true for Inverse Variance [A+08]. The Sum Mean is simply the mean sum of

internship of adjacent voxels to a central voxel [HS+73]. Inertia values are weighted based

on the difference between i and j, with the weight increasing exponentially as (i− j) in-

creases [HB07]. Cluster shade and cluster tendency evaluate the symmetry of the matrix

(skewness). Higher values imply a lack of symmetry [HS+73] [PVL+14]. Finally, Max

Probability is the maximum element of P [i, j], as a means of evaluating for the domi-

nant pixel pairings occurring [HB07]. These features can be computed using cooc3d in

MATLAB.
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Experiment and Results

3.1 Preliminary Morphometry Experiments

3.1.1 Identifying Epileptogenic Lesions using Cortical Thick-

ness Mappings

Abnormal cortical thickness is one of the features of FCD and one of the most funda-

mental for brain imaging [LWS13]. The aim of this experiment was to determine if using

cortical thickness as an objective measure could assist with identifying subtle FCD on

volumetric T1-weighted MRI. Many previous publications in the field have used volu-

metric T1 images due to their thinner slices. Of the 31 MRI-Positive patients, 5 were

known to have focal cortical thickening that was visible on visual inspection of the MRI

by a neuroradiologist prior to surgical intervention. These were cases NL008, NL0021,

NL0023, NL0036, and NL039. Control cases were omitted for this experiment.

Cortical thickness measurements were acquired using the FreeSurfer software. FreeSurfer

constructs models to represent the pial surface (the boundary between gray matter and

cerebrospinal fluid) and gray-white matter junction surface with the surfaces generated

being in the form of triangular meshes (Figure 3.1a, 3.2, and 3.3). Once the pial sur-

face and gray-white matter junction surfaces are established, additional anatomical mea-

45
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sures may be computed including cortical thickness and sulcal depth. The surfaces have

point-to-point correspondence, and the distance between these two surfaces expresses

the cortical thickness. Thus to compute the cortical thickness, first the shortest distance

from the gray-white matter junction to the pial surface is computed. As the surfaces

are deformable, this is done by finding the closest point on the opposite surface and

expanding each of the vertices of the inner surface to the outer surface. The same is then

done in reverse, taking the measurements of the shortest distance from the pial surface

to gray-white matter surface. The average of these two values is taken to be the cortical

thickness for a given vertex (Figure 3.1b). Cortical thickness measures are saved as a

vector of values by FreeSurfer. For each case, these thickness vectors were sampled into

a volume that could be read in MATLAB.

(a) (b)

Figure 3.1: Cortical thickness generation. (a) Depicts a T1 axial slice of case NL021 with

the pial surface and gray-white matter junction surface respectively indicated in red and

blue. (b) Shows the axial slice of the corresponding cortical thickness volume produced

by backprojecting the surface map to the individual volumes space.
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FreeSurfer surfaces may also be inflated to improve visualizations of features as seen

in Figure 3.4. Visualizing the cortical volumes indicates that some processing is necessary

to improve detection. To do so, we used Gaussian filtering followed by gamma filtering.

Gaussian Filtering is used in image processing to blur images using the Gaussian function,

usually as a means of reducing artifacts or noise and smoothing images. In 1-dimension,

the zero-mean Gaussian kernel is given by G(x) = 1√
2πσ2

e−
x2

2σ2 where σ refers to the

standard deviation. In 2-dimensions, as is the case with a single image, the function is

the product of the Gaussian kernel in both directions, and can be represented by G(x) =

1
2πσ2 e

−x
2+y2

2σ2 . Similarly in 3-D the Gaussian kernel is given by G(x) = 1

(
√

2πσ2)3
e−

x2+y2+z2

2σ2 .

The term 1

(
√

2πσ2)3
acts as a normalization factor and guarantees the average gray level of

the image remains the same following application of the filter. The filter is non-uniform

with voxels located at the center being weighted higher than those at the margin. The

Gaussian kernel is isotropic regardless of dimension. In 1-D it can be roughly described

as a bell, in 2-D as a circle, and in 3-D as a sphere [Rom08]. For an MRI volume 3-D

Gaussian filtering can be performed in MATLAB using the imgaussfilt3 function which

takes on additional arguments for Filter size and σ, with Filter size referring to the size of

the discretized Gaussian filter. In 1-D altering the σ, impacts the width of the Gaussian

and can be described as a scaling parameter. Thus in 2-D and 3-D changes to σ affect

the blur, and larger values of sigma produce a greater blur, as illustrated in Figure 3.5.

A gamma filter, or gamma correction can induce a nonlinear contrast adjustment to

an image. The gamma filter applied to image I(x) is J(x) = T [(I(x)] = S · I(x)γ for

constant values S and γ. When S = 1 and γ = 1, an identity transformation occurs. For

γ < 1 darker intensities are enhanced, and for γ > 1, brighter intensities are enhanced

(refer to Figure 3.6). Figure 3.7 demonstrates the impact of γ.
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(a)

(b)

Figure 3.2: FreeSurfer surface representation. The gray-white matter junction of Case

NL021 represented as a surface and in the form of triangular meshes. (a) Close up

of gray-white matter junction surface with vertices (b) Close up of gray-white matter

junction represented as a mesh.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Pial and gray-white matter junction surfaces. (a) Gray-white matter junction

mesh with vertices, (b) Pial matter junction mesh with vertices, (c) Gray-white matter

junction mesh, (d) Pial matter junction mesh, (e) Gray-white matter junction surface,

and (f) Pial matter junction surface
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(a)

(b) (c)

Figure 3.4: FreeSurfer inflated volumes: (a) Inflated MRI-Positive subject NL001 (red

regions are sulci and green regions are gyri), (b) Cortical thickness values backprojected

onto inflated volume of control NL030, and (c) Cortical thickness values backprojected

onto inflated volume of MRI-Positive Case NL039. Surfaces can be inflated or flattened

to aid in visualizing features, in this case cortical thickness. Comparing the control

NL030 to the MRI-Positive subject NL039, we can note that both in healthy cases and

FCD cases natural variations are present. There does appear to be a thicker region as

indicated by the bright spot at the top of NL039. This does in fact correspond to the

approximate location of the true lesion, however, further processing must be performed

to improve detection.
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(a) (b) (c) (d)

Figure 3.5: Effect of σ on Gaussian filter. Applied 3-D Gaussian filter using filter size of

17 and various σ values:(a) Original, (b) σ = 0.5, (c) σ = 1.9, and (d) σ = 4.5. Displayed

axial slices.

Figure 3.6: Gamma filtering on intensity of image I(x) for different values of γ. Intensity

of image is normalized between 0 and 1.

(a) (b) (c) (d)

Figure 3.7: Effect of γ on gamma filter. Applied 3-D gamma filter for various γ values:

(a) Original, (b) γ = 0.5, (c) γ = 2, and (d) γ = 9. Displayed axial slices.
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Thus, for each case a 3D-Gaussian smoothing filter (sigma=1.9, filter size=17) was

applied to the cortical volume followed by a gamma correction. A threshold was used

on intensity values of vertices to omit points that fell outside the top 5%. The selected

vertices were matched to their structure name and hemisphere using annotation files pro-

duced by FreeSurfer during pre-processing. FreeSurfer performs this structure labelling

using a probabilistic atlas mapped to a common space. Once selected vertices were la-

belled, a secondary threshold of 5 mm was applied to the cortical thickness values. This

was the standard upper limit in Freesurfer, however these values were initially included

to allow for vertex matching.

For preliminary experiments we will consider coarse labelling and fine labelling. Coarse

labelling corresponds to the brain being labelled to 8 possible locations, 4 per hemisphere:

right and left frontal, temporal, parietal, and occipital. Fine labelling corresponds to the

brain being labelled to 70 possible locations, 35 for each hemisphere (Refer to Table 2.1,

Figure 2.3).

The resulting clusters of abnormal cortical thickness were first classified using coarse

labels. The location of clusters was compared to surgical resection site on post-operative

Computed tomography (CT) or T1-weighted MRI scans. For the 31 patients, using

coarse labelling to the 8 major lobes resulted in clusters of abnormal cortical thickness

identified in all 31 patients and in 22 patients these locations corresponded to surgi-

cal resections sites. Subjectwise sensitivity acts as our key performance evaluator, with

lesional sensitivity and specificity serving to offer supplementary information. For pre-

liminary morphometric experiments, the subjectwise specificity cannot be computed due

to control cases not being included. The overall lesional sensitivity of cortical thickness

measures to identify FCD was 69% and the lesional specificity was 55%. The overall

subjectwise sensitivity was 71%. Of the 5 patients that had focal cortical thickening by

visuals inspection, objective measures of cortical thickness showed that the lesional sensi-

tivity and lesional specificity were 100% and 74% respectively and subjectwise sensitivity
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was also 100%. These results are summarized in Table 3.1.

Overall(%) Cases Identified to show Focal Cortical

Thickening at Visual Inspection (%)

Lesional Sensitivity 71 100

Lesional Specificity 55 74

Subjectwise Sensitivity 69 100

Table 3.1: Results of coarse labelling analysis - sensitivity and specificity considering all

cases versus solely considering cases identified during visual inspection to present focal

cortical thickening

The next step was to examine whether the lesion location could be further isolated.

Thus, the overall process was repeated using the finer labelling. Vertex location was se-

lected in the same manner as performed using coarse labelling, with a modification at the

lobe matching stage. Instead of matching selected vertices to the 8 major lobes, we now

match to the 70 sub-regions. The complete annotation volume produced by FreeSurfer

during pre-processing (the left hemisphere is presented in Figure 2.3) was used to identify

the sub-regions such that a cluster could fall into 70 possible locations. Among the 31

patients, using fine labelling resulted in clusters of abnormal cortical thickness identified

in all patients and in 16 patients these locations corresponded to surgical resection sites.

The overall lesional sensitivity of cortical thickness measures to identify FCD was 33%

and the lesional specificity was 85%. The overall subjectwise sensitivity was 52%. Con-

sidering the 16 patients which were correctly colocalized, the lesional sensitivity was 59%

and lesional specificity was 86%. From the 5 patients that had focal cortical thickening by

visuals inspection, cortical thickness measurements showed that the lesional sensitivity

and lesional specificity were 78% and 89% respectively. Subjectwise sensitivity was 80%

with only case NL023 not being colocalized. These results are summarized in Table 3.2,

and selected results are shown in Figure 3.8.
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Overall (%) Cases identified to show focal cortical

thickening at visual inspection (%)

Lesional Sensitivity 33 78

Lesional Specificity 85 89

Subjectwise Sensitivity 52 80

Table 3.2: Results of fine labelling analysis - sensitivity and specificity considering all

cases versus solely considering cases identified during visual inspection to present focal

cortical thickening

An issue with the method was low specificity, implying a high number of false pos-

itives. However this is not evident when comparing corresponding slices to resected

regions (Figure 3.8). The reason for the high false positives is that the method ends up

identifying clusters in areas that possess higher cortical thickness in all subjects. Con-

sider Figure 3.9 which depicts the cluster selections of subject NL039. The implication is

that the method would work best as a supplementary tool for verification.The complete

pipeline of the employed method is outlined in Figure 3.10.
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Figure 3.8: Selected results of volumetric T1 MRI processing using cortical thickness.

(Column 1) Original MRI image after normalization and skull stripping , (Column

2) Showing cortical thickness measurements, followed by the application of Gaussian

Smoothing and Gamma filtering. Visible cluster of abnormal signal indicates region of

lesion. (Column 3) Original image with green overlay indicating vertices identified by

program to indicate lesion, (Column 4) Surgical resection site on post-operative CT or

T1 scan. Scan indicating location of lesion was removed
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(a) (b)

(c) (d)

Figure 3.9: Comparison of TP and FP selections in subject NL039. (a) Subject NL039

cortical thickness measurements, followed by the application of Gaussian Smoothing and

Gamma filtering. Visible cluster of abnormal signal indicates region of lesion. (b) Green

overlay indicating vertices identified by program to indicate lesion. Corresponds to loca-

tion of true lesion. (c) Cortical thickness measurements, followed by the application of

Gaussian Smoothing and gamma filtering of alternate axial slice of same subject. Visible

cluster of abnormal signal indicates program selection for region of lesion. (d) Alternate

axial slice with green overlay indicating vertices identified by program to indicate lesion.

Location does not correspond to true resected area.
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Figure 3.10: Overview of method to identify Epileptogenic lesions using cortical thickness

mappings
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3.1.2 Identifying Epileptogenic Lesions using Blurring along

Gray-White Matter Interface

Blurring at the gray-white matter interface is one of the MRI features of FCD. We seek

to verify if using the objective measure of blurring of the GM/WM interface could assist

with identifying FCD on T1-weighted MRI scans. To identify the location of the inter-

face the FreeSurfer produced ribbon.mgz volumes was used. The ribbon.mgz volume is

a binary mask of the cortical ribbon that maps the left/right hemisphere gray matter

and white Matter. To detect the interface, at each voxel the neighbouring 8 voxels were

examined. If 30% were contained in the Gray Matter and 30% were contained in the

White Matter, the voxel was considered to fall on the interface. A binary mask volume

of the interface was composed for each case (Figure 3.11). A sample result of the gen-

erated interface mask of a T1-weighted acquisition is presented in Figure 3.12a and 3.12b.

Figure 3.11: Method of selecting values which fall on interface. Consider a region of

interest of single axial slice, for a given central voxel (indicated by green dot), the 8

neighbouring voxels (indicated by red dots) are examined to determine if they are con-

tained in the gray matter or white matter.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: (a) Original T1-weighted image, (b) Sample interface mask generated, (c)

Directional gradient along x-axis (Gx), (d) Directional gradient along y-axis (Gy), (e)

Gradient magnitude of complete image, and (f) Interface mask was used to segment

regions of the gradient magnitude, producing the gradient magnitude of the interface.
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To model the blur we employed the gradient magnitude, a measure of intensity change

at each pixel of an image. It can alternatively be described as a measure of steepness

of the slope at each pixel, and is commonly used for edge detection. To compute the

gradient magnitude for a 2-D image I(x, y) we first compute the x and y directional

gradients (refer to Figure 3.12c and 3.12d) by taking the partial derivatives such that

Ix =
dI(x, y)

dx
=
I(x+ 1, y)− I(x− 1, y)

2
(3.1)

and

Iy =
dI(x, y)

dy
=
I(x, y + 1)− I(x, y − 1)

2
. (3.2)

Following this, gradient magnitude can be computed by GM(x, y) =
√
I2
x + I2

y . This is

depicted in Figure 3.12e.

The gradient magnitude was computed for each case using the original volume fol-

lowing intensity normalization from FreeSurfer. The interface binary mask was used to

segment the interface regions of the gradient magnitude (Figure 3.12f). Blurring is indi-

cated by regions with lower values of gradient magnitude [ACB+03]. For each axial slice,

we consider all non-zero values and identify it’s maximum and minimum value. The dif-

ference of these values is computed, and threshold of 5% was applied to the measurement

and added to the minimum. A mask was used to select all non-zero values below this

threshold. This process was repeated for each axial slice of a volume producing a vector

of selected vertices. The vertices were matched to their structure name and hemisphere

using annotation files produced by FreeSurfer during pre-processing. Following this they

were combined using coarse labelling to the 8 major lobes. Any lobe which had total

selected vertices below 50 was dropped. In all 31 cases, regions were selected, of which

23 cases corresponded to the true area. The lesional sensitivity and specificity were re-

spectively 72% and 67% and the subjectwise specificity was 74%.
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Coarse Labelling - Overall(%) Fine Labelling - Overall(%)

Lesional Sensitivity 72 68

Lesional Specificity 67 63

Subjectwise Sensitivity 74 68

Table 3.3: Sensitivity and specificity analysis of results using blurring of gray-white

matter interface

The selected locations were then mapped using fine labelling of 70 structures. Of the

31 cases all 31 had areas selected, of which 21 corresponded to the true location. This

produces lesional sensitivity of 68%, lesional specificity of 63%, and subjectwise sensi-

tivity of 68%. Since this method directly took the output of the lobe droppings that

occurred in coarse labeling into the fine labeling, we can also examine the performance

of only the cases that were correctly partially/completely colocalized at the first stage.

Thus considering the 23 cases that were correctly identified at coarse labelling, their re-

sulting fine labelling produced lesional sensitivity and specificity of 90% and 60%. The

results of coarse and fine labelling can be found in Table 3.3.

Sample results are presented in Figure 3.13. In some cases, solely true locations were

selected. For a majority of cases the true location was amongst several locations selected.

The complete pipeline of the method followed is presented in Figure 3.14.
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Figure 3.13: Results of volumetric T1 MRI processing using blurring of gray-white matter

interface. (Column 1) Original MRI image after normalization and skull stripping ,

(Column 2) Showing gradient magnitude measurements on interface (Column 3) Original

image with green overlay indicating vertices identified by program to indicate lesion,

(Column 4) surgical resection site on post-operative CT or T1 scan. Scan indicating

location of lesion was removed
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Figure 3.14: Pipeline to identify epileptogenic lesions using blurring along gray-white

matter interface

3.1.3 Comparing results of T1, T2, and FLAIR acquisitions

using Blurring along Gray-White Matter Interface

Along with the T1-weighted acquisition, other acquisition methods are commonly per-

formed for patients. These modalities can also supply additional information during
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diagnosis. For this reason we sought to explore the impact of different modalities at

detecting lesion location using gradient magnitude mappings.

(a) (b)

(c)

Figure 3.15: Axial slice of (a) T1-weighted and registered (b) T2-weighted and (c) FLAIR

Volumes

The modalities considered were T1, T2, and FLAIR. FreeSurfer can directly process

T1 acquisitions, as opposed to T2 and FLAIR. In order to incorporate other supplied

modalities into analysis, other means of pre-processing were examined. For T2 and

FLAIR acquisitions we performed the following pipeline in preparation of analysis

• In MATLAB, Dicom Import of the SPM package was used to read in the T2 and
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FLAIR volumes and save the output as .nii file.

• In the command terminal the FreeSurfer registration tools bbregister and tkregis-

ter2 were used with a flag for the subject, to register the .nii to its corresponding

T1 acquisition, and output the registration file register.dat.

• Using mri vol2vol in the command terminal, resampled the skull stripped T1 vol-

ume acquired during FreeSurfer pre-processing into the field-of-view of the T2 and

the FLAIR volume and saved each as .mgz file.

• Applied the skull stripped mask volume to the T2 and FLAIR using mri mask and

saved .mgz file.

• Used mri vol2vol to resample the volume to a 256x256x256 space. This will allow for

utilizing T1 structural data that we already have from pre-processing in FreeSurfer.

Saved as final .mgz volume for use.

Samples results of the axial slices of registered volumes are presented in Figure 3.15.

With the T2 and FLAIR images now in the same space as T1, the structural details

from processing the T1 image could be used in combination with all modalities. The

gradient magnitude was computed for each case for all 3 modalities and the interface was

segmented. Blurring is indicated by regions with lower values of gradient magnitude.

For each axial slice, we consider all non-zero values, identify the maximum and the

minimum, and compute the difference of the two. In the previous experiment solely

considering T1 acquisitions, a threshold of 5% was applied to the measurement and

added to the minimum. In order to compare the impact of modality on result, the same

method of selection had to be used across the board. One of the issues was that the

T2, and FLAIR acquisitions were more sensitive than T1, and using a threshold of 5%

was too high. Thus a confidence of 1% was applied to the measurement and added to

the minimum of each modality. A mask was used to select all non-zero values below this
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threshold. This process was repeated for each axial slice of a volume producing a vector of

selected vertices. The vertices were matched their structure name and hemisphere using

annotation files produced by FreeSurfer during pre-processing. Following this they were

matched using fine labelling to the 70 structural lobes. Any lobe which had total selected

vertices below 8 was dropped. The results can be found in Table 3.4. In the case of T1

acquisitions, using this increased sensitivity resulted in clusters identified in 3 patients

of the 31, all of which corresponded to surgical resections sites. The lesional sensitivity,

lesional specificity, and subjectwise sensitivity were respectively 3%, 99%, and 10%. For

the T2 acquisition, clusters were identified in all 31 patients, of which 23 corresponded

to surgical resections sites. The lesional sensitivity, lesional specificity, and subjectwise

sensitivity were respectively 55%, 80%, and 74%. With the FLAIR acquisition, clusters

were identified in all 31 patients, of which 25 corresponded to surgical resections sites.

The lesional sensitivity, lesional specificity, and subjectwise sensitivity were respectively

61%, 74%, and 81%. These results imply that FLAIR and T2 better colocalize lesions

when using blurring of the interface, and supports the argument for further examination

into the use of multiple modalities in computer aided lesion detection techniques.

Modality Lesional

Sensitivity (%)

Lesional

Specificity (%)

Subjectwise

Sensitivity (%)

T1 3 99 10

T2 55 80 74

FLAIR 61 74 81

Table 3.4: Comparing analysis of T1, T2 and FLAIR
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3.2 Identifying Epileptogenic Lesions using Classifi-

cation Techniques

3.2.1 Background

Preliminary analysis using morphometry with cortical thickness and blurring of the inter-

face produced reasonable results for obvious cases. Volume maps of the features correctly

localized lesions in such cases, but performance was poor for instances in which the es-

tablished features were markedly subtle. Methods combining morphometric and textural

features have yielded improved detection rates when compared to standard radiological

approaches in the past [ACB+03]. The next step in the approach was to introduce tex-

tural features into the analysis and examine if an semi-automated detection model could

be developed.

The method described by Antel et al. [ACB+03] utilized a combination of 18 FCD

and 14 control cases from an adult cohort. The true location of lesions was manually

segmented by an expert to be used in the verification of performance. An automated

classifier was developed using a 2-step Bayesian classifier trained on recognized MRI FCD

features and textural features derived from GLCMs to classify voxels as lesional or non-

lesional. A threshold derived from the largest clusters present in each control case, taken

to be the result of random noise, was applied to all subjects (healthy controls and FCD

cases) effectively dropping all clusters selected in control cases during the classification

process. Any clusters that remained were identified as lesional. The results of this imple-

mentation was a subjectwise specificity of 100% and subjectwise sensitivity of 83%. We

developed a modified version of this, and implemented a 2-Step Naive Bayes classifier

method and a 2-Step SVM classifier method. A comparative study was performed imple-

menting different classification techniques (k-NN, Conditional Inference Trees, Random

Forest, and Näıve Bayes) to act as markers for performance with the 2-Step implemen-
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tations. These techniques were selected on the basis of implementations performed by

others in the field of computer aided epileptogenic lesion selection [BBC+08] [EAHCL13]

[HBS+16] [KGL16] [ACB+03]. We will perform a comparative study using preliminary

techniques (3.2.3) followed by the implementation of 2-Step methods (3.2.4) and 3.2.5).

Results of all methods will be compared in Section 3.2.6. Supplementary experiments

examining MRI-negative cases 3.2.7 and the use of other modalities are then performed

(3.2.8).

3.2.2 Experimental Setup

Figure 3.16: Classification Pipeline
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We present the complete pipeline to identify lesions in Figure 3.16. The data consisted

of 31 MRI-positive FCD cases, and 13 healthy control cases. Quantitatively representing

texture was performed using Gray-Level Co-occurrence Matrices (GLCM). Symmetric

GLCMs were computed 3-dimensionally on T1-weighted acquisitions with the following

parameters: a distance of 3 voxels, and an intensity range of 32 gray levels. The symmetry

allowed the 26 directions to be reduced to 13, such that 13 co-occurrence matrices were

produced per voxel. From each generated matrix 12 textural descriptor features were

computed: Angular Second Momentum, Contrast, Entropy, Correlation, Homogeneity,

Variance, Sum Mean, Inertia, Cluster Shade, Cluster Tendency, Max Probability, and

Inverse Variance. These 12 descriptor features were the available attributes in cooc3d.

For each feature, the average of the 13 was taken to be the value mapped back to the

position. Figure 3.17 depicts a sample axial slice using the 13 directions to produce the

average contrast volume.

Z-score volumes were computed for each textural descriptor attribute average volume

by computing z = x−µ
σ

where x is the original voxel value, µ the volume-specific mean,

and σ the volume specific standard deviation. Once all the volumes for all cases were

produced and within-subject z-scores computed, they were normalized by computing

between-subject z-scores using the overall mean µoverallF and standard deviation σoverallF

for each feature F ∈ {FASM , FCONTRAST , ...FINV V ARIANCE}. This process was per-

formed and data was down-sampled to reduce computation time, with every fifth voxel

stored to produce texture volumes. Every fifth voxel was selected as the sampling rate for

storage because it was the common factor to be used in later resampling on the basis of

tissue class. We employed the computational models for two of the common FCD traits

cortical thickness, and blurring of the gray-white matter interface previously described

in preliminary experiments to generate volumes. These volumes too were standardized

by computing z-scores. For classification we considered the z-score volumes of the estab-

lished morphometric MRI features and the textural features.
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Figure 3.17: Contrast volumes using D = 3 for 13 directions and resulting Cavg. To

generate symmetric 3-D GLCMs, 13 directions are considered. For each direction a

matrix is generated and the Contrast is computed. This value gets mapped back to the

original voxel around which the GLCMs were generated. The average of the 13 values

produced considering each direction gets mapped to the same location in Cavg. Doing

so for all points produces the average Contrast volume. A sample axial slice of each

direction and the generated average for Contrast is displayed.
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A voxel in a volume could be labelled by five possible tags: Lesion, Gray Matter,

White Matter, Gray-White Matter Interface and Background or Cerebrospinal Fluid

(CSF). Using the FreeSurfer generated volumes T1.mgz, ribbon.mgz, and aparc+aseg.mgz

in combination with the interface volume previously produced during Blurring along

Gray-White Matter Interface experiments, labels could be produced in MATLAB for the

Gray Matter, White Matter, Gray-White Matter Interface and Background/CSF (Figure

3.18).

Figure 3.18: Volume labelling. Volumes down-sampled to store every 5th voxel. Dis-

playing sample axial slice with colormap bar of color labels. Labels indicated for Back-

ground/CSF (0.5), Gray-white matter interface (1), Cerebral white matter (2), Cerebral

cortex gray matter (3), and Lesion (4).

Excel files were created containing subject based lesional information supplied by the

radiologist that could be loaded into MATLAB. The Gray Matter, White Matter, Gray-

White Matter Interface and Lesion are considered to make up the brain’s volume. Two

datasets were constructed for classification, a training and testing set, with sampling
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rates differing between the two. We seek to train the classifier on a training set balanced

with respect to label classes, and test performance on a testing set unbalanced in this

respect. Sampling frequencies of the training set data are selected to achieve roughly

equal numbers of voxels in each label. For the training set, voxels are uniformly selected

from all label classes. The training set consisted of irregular sampling from each of the

labelling types such that: every 5th voxel of the lesion was selected, every 15th voxel

of the Gray Matter, every 15th voxel of the White Matter, every 5th voxel of the Gray

Matter-White Matter Interface, and every 500th voxel of the Background/CSF resulting

in approximately equal selection from each label. The testing set utilized equal sampling

of the brain volume by selecting every 5th voxel of the brain’s complete volume. In addi-

tion to this, every 100th voxel of the background (not including CSF) was selected. The

sampling frequencies were used to select the corresponding observed attribute values at a

given voxel location. Each dataset (training and testing) consisted of 20 columns: Case,

FreeSurfer Structure Identifier, Class Label (1 and 0 referencing lesional and non-lesional

respectively), Coronal Vertex, Axial Vertex, Sagittal Vertex, and the 14 features.

Classification was performed using either a standard single step method using all

features as input, or a modified 2-Step method following the approach described in

[ACB+03]. In the 2-step method, data is first trained solely on morphometric features.

Data that is classified as lesional is then reclassified using textural features. For all

classification techniques, we can generalize the approach as follows: Given a training

and testing data set, we classify the test data in R as lesional or non-lesional using a

leave-one-out (N − 1) approach for each subject N ∈ {1, 2, 3, ...44} (31 MRI-Positive

Case, 13 Healthy Controls). For each experiment the process was repeated 5 times to

measure computation time. Results of experiments for each classification technique are

written to .csv files containing voxel information and predicted class labels to be read

into MATLAB. These results are used to implement a 2-Step pipeline in which cases are

first identified as either control or FCD, and then the structural location of the lesion
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is identified. To do so, control cases are examined for the maximum cluster size within

each of the structures to introduce structural thresholds. Lesional clusters smaller than

these thresholds within each structure are deemed a result of random noise and omitted

from the lesion map produced by the classifier. Thus, for each case, the thresholds are

applied to drop structures. If all structures remain unflagged, the case is identified as a

control. If any region is flagged, the case is deemed irregular and identified as an FCD

case. For all cases identified as FCD, the next step is to find the possible location of

the lesion. To do this we select an appropriate threshold using criterion selection via

ROC curves. We previously discussed the Youden index (J) as a means of selecting the

optimal parameter of a ROC curve [Eke12]. We can express J relative to subjectwise

sensitivity and subjectwise specificity in terms of the (TP )i, (TN)i, (FP )i, and (FN)i

relating to the i-th subject as

J = max

(
(Subjectwise Sensitivity)i + (Subjectwise Specificity)i − 1

)
= max

(∑N
i=1[(TP )i > 0]

N
+

∑N
i=1[(TN)i > 0]

N
− 1

)
.

(3.3)

Due to the nature of our pipeline for classification, subjectwise sensitivity and subject-

wise specificity are computed in isolated steps (Refer to Figure 3.16). A control and FCD

case are distinguished and subjectwise specificity is computed. In the next step, FCD

cases have structures dropped using an optimal threshold, and subjectwise sensitivity,

lesional sensitivity and lesional specificity are computed. Once a method produces an

appropriate level of subjectwise specificity we seek to produce a strong subjectwise sen-

sitivity, however some measure of specificity must still be incorporated into it. Thus we

employ a modified Youden’s J index (Eq. 3.4) that aims to produce a balance between

subjectwise sensitivity and lesional specificity.

Jmod = max

(
(Subjectwise Sensitivity)i + (Lesional Specificity)i − 1

)
= max

(∑N
i=1[(TP )i > 0]

N
+

∑N
i=1(TN)i∑N

i=1[(TN)i + (FP )i]
− 1

) (3.4)
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To select the optimal threshold for each algorithm implementation we utilized this modi-

fied J index. For all cases identified as FCD, we set the preferred threshold as determined

by the ROC curves and a modified J index. Any regions below this are dropped.

3.2.3 Preliminary Performance Assessment Experiment - Com-

parative Study

We seek to compare the performance of several methods of classification for preliminary

assessment and serve as markers for our 2-Step implementations described in subsequent

subsections. To perform lesion identification these classification techniques were imple-

mented in R. The methods were k-NN, Conditional Inference Tree, Random Forests, and

Näıve Bayes. A leave-one-out cross validation method on the basis of subjects was per-

formed, where each subject N in the test set was classified using a classifier trained on

the remaining N − 1 subjects. This method was employed in all classification systems.

The k-Nearest Neighbour algorithm was implemented utilizing the package class. The

package partykit was used to employ a Conditional Inference tree for classification. A

Random Forest algorithm was performed with the package randomForest. To execute

Näıve Bayes the package naivebayes was used. All algorithms were trained on all 14

features.

The effect of parameters on performance of k-NN and Random forest was inspected.

We previously discussed the selection of an optimal k value for k-NN being a key con-

sideration, especially in instances of imbalanced problems (as is the case with lesion

detection). We seek to balance the effect of noise, without the classifier being biased to-

wards prediction of the majority non-lesional class. With the Random Forest algorithm

we seek to identify the number of trees that offers predictive power without unnecessary

computation time. Processing time is also a factor with the k-NN algorithm, with larger

k values naturally leading to longer runtimes.

To examine the impact of k, k-NN was performed for k = 2j for j = 1, 2, . . . 8. The
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impact of the number of trees, t, on results was similarly performed for Random Forest

with t = 2j for j = 1, 2, . . . 8. The runtime results are presented in Figure 3.19 and Figure

3.20. The associated lesional sensitivity, lesional specificity, subjectwise sensitivity and

modified Youden’s index at each instance of evaluation for each algorithm is presented

in Figure 3.21 and Figure 3.22. Seeking a balance between processing time and the mod-

ified J index of the ROC, resulted in the selection of k = 16 for k-NN and t = 16 for

Random Forest for our purposes. These parameter values are utilized in the experiments

for comparative analysis.

k-NN Conditional

Inference

Tree

Random

Forest

Naive

Bayes

Subjectwise

Specificity (%)

100 100 100 100

AUC 0.87 0.86 0.85 0.88

Selected

Threshold

40 7 26 30

Lesional

Sensitivity (%)

67 51 81 52

Lesional

Specificity (%)

73 79 67 78

Subjectwise

Sensitivity (%)

94 81 94 84

Table 3.5: Evaluating performance of k-NN, Conditional Inference Trees, Random Forest,

and Naive Bayes classification
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Four experiments were implemented with the different classification techniques (1)

k-NN with k = 16, (2) Conditional Inference Tree, (3) Random Forests with number

of trees=16, and (4) Näıve Bayes without any prior values. The pipeline described in

Figure 3.16 was followed. ROC curves with selected modified J indices are presented in

Figure 3.24. Runtime analysis is presented in Figure 3.23. Results are presented in Table

3.5 and indicate that all methods perform comparably. The healthy controls were all

correctly identified, and substantially high AUC values were produced by each method.

The use of k-NN produced the highest AUC value, indicating the most accuracy. The

implementation using random forest had the highest subjectwise sensitivity and lesional

sensitivity indicating that it was able to most completely colocalize the most lesions.

However it also had the lowest lesional specificity, indicating that improved detection is at

the cost of precision. The highest lesional specificity was seen with the use of conditional

inference trees. Although it also had the lowest subjectwise sensitivity overall, it is still a

relatively high value (81%). While it has low lesional sensitivity, the conditional inference

tree method is able to more accurately identify lesional structures. The Naive Bayes

implementation performs relatively on par with the conditional inference tree method.
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Figure 3.19: Evaluating k-NN runtime with respect to parameter selection. The k-NN

algorithm was implemented with k increasing exponentially using base 2 for k = 2j for

j = 1, 2, . . . 8. This process was repeated 5 times, and results are presented in boxplots.

Figure 3.20: Evaluating Random Forest runtime with respect to parameter selection.

The Random Forest algorithm was implemented with t increasing exponentially using

base 2 for t = 2j for j = 1, 2, . . . 8. This process was repeated 5 times, and results are

presented in boxplots.
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Figure 3.21: k-NN performance analysis. Generated multiple random forests with num-

ber of trees k increasing exponentially using base 2 for k = 2j for j = 1, 2, . . . 8. The

associated lesional sensitivity, lesional specificity, subjectwise sensitivity and modified

youden’s index is presented. We seek to maximize the modified Youden’s index (which

seeks a balance between the subjectwise sensitivity and lesional specificity) for an appro-

priate computation time (Figure 3.19). This occurs at k = 24 = 16.

Figure 3.22: Random Forest performance analysis. Generated multiple random forests

with number of trees t increasing exponentially using base 2 for t = 2j for j = 1, 2, . . . 8.

The associated lesional sensitivity, lesional specificity, subjectwise sensitivity and mod-

ified Youden’s index is presented. We seek to maximize the modified Youden’s index

(which seeks a balance between the subjectwise sensitivity and lesional specificity) for an

appropriate computation time (Figure 3.20). This occurs at t = 24 = 16.
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Figure 3.23: k-NN with k = 16, Conditional Inference Tree, Random Forest with t = 16

and Naive Bayes Classifier runtime

(a) (b)

(c) (d)

Figure 3.24: (a) k-NN, (b) Conditional Inference Tree, (c) Random Forest and (d) Naive

Bayes Classifier ROC curves with threshold selection using modified J index
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3.2.4 2-Step Naive Bayes Classifier

2-Step

Naive

Bayes

Subjectwise Specificity (%) 100

AUC 0.90

Selected Threshold 17

Lesional Sensitivity (%) 63

Lesional Specificity (%) 75

Subjectwise Sensitivity (%) 94

Table 3.6: 2-Step Naive Bayes Classifier

Figure 3.25: 2-Step Naive Bayes Classifier ROC curve with threshold selection using

modified J index
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Antel et al. [ACB+03] implemented a 2-Step Bayesian classifier in which attribute data

was split into morphometric and textural features, and the classifier is first trained on

morphometry then using features from GLCMs. A two-classifier approach is justified

because the two groups of attributes extract different types of information from the MRI

volume. The computational models of MRI morphometric characteristics of FCD (i.e.

cortical thickness and blurring of the gray-white matter interface) measure first-order

statistical properties of individual voxels. The texture features measure second-order

properties of the volume by assessing spatial relationships amongst voxels of varying

intensities using the associated GLCMs. Therefore, the use of two classifiers is warranted,

as they would be highly trained in distinct regions within the feature space. Their method

produced high values of subjectwise sensitivity (colocalized lesion in 15/18 of the FCD

subjects) and subjectwise specificity (rejected all Control subjects). For this reason, the

paper served as a key motivation in our experimental setup. We implemented a modified

version of this method to perform classification using Näıve Bayes to create a 2-Step

classifier. The classifier is first trained on the morphometric features with priors were set

to heighten lesional sensitivity to encourage selection. This was associated with a cost

of some misclassification with Gray Matter. Data classified as lesional by morphometry

is then reclassified by a secondary classifier trained solely on the second-order texture

features. ROC curves with selected modified J indices are presented in 3.25. The results

of the experiment are displayed in Table 3.6.
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3.2.5 2-Step SVM Classifier

2-Step

SVM

Subjectwise Specificity (%) 100

AUC 0.88

Selected Threshold (%) 54

Lesional Sensitivity (%) 69

Lesional Specificity (%) 72

Subjectwise Sensitivity (%) 94

Table 3.7: 2-Step Support Vector Machine Classifier

Figure 3.26: 2-Step SVM Classifier ROC curve with threshold selection using modified

J index
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Support Vector Machines (SVM) have been used in identifying epileptogenic lesions and

performed well in MRI-negative cases. They were found to be more specific in region

localization with fewer false positive detections generated when compared to SPM im-

plementations [EAHJ+16] [EAHCL13] [HBS+16]. The performance of the 2-Step Naive

Bayes Classifier met expectations, thus the idea of applying the concept of a 2-Step clas-

sifier using SVM was explored. [HBS+16] employed 2 separate SVM classifiers albeit with

a searchlight-based multivoxel pattern analysis methodology using mean thickness and

curvature z-scores. The SVM technique was initially not implemented as attempts to do

so proved computationally expensive and made it inefficient for the complete data set.

However by following the 2-Step method with downsampled data, the notion was that

it would be faster to implement as the initial training on the entire data set would be

using only 2 attributes, and the secondary training stage would have a marked reduction

in the data even though overall, 14 attributes would be used. To implement SVM the

kernlab package was used with a Gaussian kernel with σ = 3. ROC curves with selected

modified J indices are presented in 3.26. Results are presented in table 3.7.

3.2.6 Evaluating Technique Performances

Table 3.8 present performance measures and runtimes of implemented methods. From the

experimental setup previously presented in Figure 3.16, following classification, a 2-step

pipeline is applied to the output. In step 1, the focus is on discriminating between Con-

trols and FCD cases. In Table 3.8, we see that all implementations will correctly identify

Controls (subjectwise specificity = 100%), however only 3 of the techniques (Conditional

Inference Trees, Naive Bayes, 2-Step Naive Bayes) correctly identified all FCD cases. In

step 2, a threshold is selected using ROC curves and the maximum modified J index

to produce a balance in maximizing subjectwise sensitivity and lesional specificity. We

see here that the maximum subjectwise sensitivity is 94 % occurs for 4 of the techniques

(k-NN, Random Forest, 2-Step Naive Bayes, 2-Step SVM) implying that in 29/31 FCD
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k-NN Conditional

Inference

Tree

Random

Forest

Naive

Bayes

2-Step Naive

Bayes

2-Step

SVM

Mean Runtime

(minutes)

60 3 5 0.3 0.2 17354

STEP 1

Subjectwise Specificity

(%)

100 100 100 100 100 100

Number of Incorrectly

Rejected Cases of

FCD

1 0 2 0 0 1

STEP 2

Threshold Selected

Using ROC

40 7 26 30 17 54

Modified J index 0.66 0.60 0.61 0.61 0.69 0.66

Lesional

Sensitivity (%)

67 51 81 52 63 69

Lesional

Specificity (%)

73 79 67 78 75 72

Subjectwise Sensitivity

(%)

94 81 94 84 94 94

Table 3.8: Evaluating technique performances between classification techniques. In step

1 input subjects are distinguished between cases healthy controls and FCD subjects.

From this step we compute subjectwise specificity and make note of any FCD cases

incorrectly identified as healthy subjects. In step 2 using cases identified as FCD in

combination with ROC curves of lesional specificity and subjectwise sensitivity a modified

J index is computed to select the optimal threshold. The associated lesional sensitivity,

lesional specificity and subjectwise sensitivity for this cut-off are noted. The classification

techniques were performed 5 times and the mean was noted.
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cases the lesions were partially or wholly colocalized. Examining the associated Lesional

Specificity for these techniques, k-NN, Random Forest, 2-Step Naive Bayes, 2-Step SVM

respectively had 73%, 67%, 75%, and 72%. Thus, the 2-Step Naive Bayes technique

produce the best results comparatively, with the maximum subjectwise sensitivity and

lesional specificity (reflected by the maximum Modified J Index value). It also did not

reject any FCD cases in the first step, and has the shortest mean runtime due to the

package being a high performance implementation (0.2 minutes). It should be noted that

the results indicate that the SVM underperforms compared to other techniques. However

the results of SVM were based on preliminary parameter setting, and are not optimized

by any means. Overall, all techniques performed relatively on par with on another, with

the 2-Step Naive Bayes producing the largest subjectwise specificity, subjectwise sensi-

tivity, and lesional specificity concurrently. The largest lesional sensitivity was produced

by the Random forest implementation, but it was also coupled with the smallest lesional

specificity.

3.2.7 A Study of MRI-negative Cases using 2-Step Naive Bayes

Classifier

Thus far, we have performed analysis on MRI-positive cases. For MRI-positive cases

we noted in preliminary morphometric experiments that established features that were

not used to identify the lesion using standard radiological assessment could be detected

through computational methods. For this reason we seek to extend the methods used on

MRI-positive cases to the increasingly subtle MRI-negative cases. We are satisfied with

the pipeline built off MRI-positive cases and controls using the 2-Step Näıve Bayes clas-

sifier, and now seek to conduct tests on MRI negative Cases. Four MRI Negative cases

(NL041, Nl042, NL043, NL044) were classified using the 2-Step Näıve Bayes classifier

following the pipeline presented in 3.16.

The method correctly identified NL043 and NL044 as cases of FCD and selected le-
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sional structures colocalizing the true lesion locations in both cases. However, the method

incorrectly identified NL041 and NL042 as healthy cases. Thus solely considering the 4

MRI-Negative cases there was a 50% subjectwise sensitivity. Evaluating performance

considering solely NL043 and NL044, the lesional sensitivity was 60% and the lesional

specificity was 87%. Considering overall performance (accounting for all 4 cases) these

values become 25% and 94%. The reason for the drop in lesional sensitivity is due to

the face that NL041, NL042, NL043, NL044 respectively had 6, 1, 1, and 4 true lesion

structures. Thus failing to recognize NL041 and NL042 contributes more to the lesional

sensitivity. The implication of this test is that for the cases that are not rejected (NL043,

NL044) the method performs acceptably in terms of colocalizing the lesion while main-

taining an appropriate specificity. Sample results are presented in Figure 3.27 for case

NL043.
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(a) (b)

(c) (d)

Figure 3.27: Results of the true lesion structural location of NL043 and the selected struc-

tures. (a) Displays select T1 axial slice with corresponding FreeSurfer region (rightsupe-

riorfrontal) of lesion highlighted in red. (b) Select T1 axial slice with selected FreeSurfer

regions using 2-Step Naive Bayes classification method with colours differing on the basis

of region selected (magenta - rightpostcentral, blue - rightprecentral, cyan - rightpre-

cuneus, red - rightsuperiorfrontal, Yellow - rightsupramarginal). (c) Select T1 axial slice

with selected FreeSurfer regions using 2-Step Naive Bayes Classification method with all

selected structures in green. (d) Associated post-surgical CT scan displaying resected

location.
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3.2.8 Comparing Performance of 2-Step Naive Bayes Classifier

for T1, T2, FLAIR implementations

T1 T2 FLAIR

STEP 1

Subjectwise

Specificity (%)

100 100 100

Number of

Incorrectly

Rejected Cases of

FCD

0 1 6

STEP 2

Threshold Selected

Using ROC

17 22 57

Modified J index 0.69 0.70 0.60

Lesional Sensitivity

(%)

63 60 42

Lesional Specificity

(%)

75 80 89

Subjectwise

Sensitivity (%)

94 90 71

Table 3.9: Evaluating 2-Step Naive Bayes performances using T1, T2, FLAIR

The abnormal signal in cortex may not be well detected on T1-weighted when compared

to T2-weighted acquisition or FLAIR. T2-weighted sequences are most sensitive to brain

pathology detection. Textural and morphological analysis was performed on volumetric

T2, and FLAIR images using the 2-Step Naive Bayes classifier with the same method

described in Figure 3.16. Although volumetric T1, T2 and FLAIR sequences were avail-
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able for all FCD subjects, this was not the case for the control data. While T2-weighted

images were available for the same previously used T1 controls, FLAIR sequences were

not available. Thus a supplementary set of 13 FLAIR healthy control subjects was used.

Note that cortical thickness volumes produced by FreeSurfer was used for all 3 meth-

ods, however interface blurring gradient magnitude and texture attribute volumes were

derived using the considered modality. ROC curves with selected modified J indices

are presented in 3.28. Results are presented in Table 3.9. The respective subjectwise

sensitivity was 94 % (29/31 cases colocalized), 90 % (28/31 cases colocalized), and 71%

(22/31 cases colocalized) using the T1-weighted, T2-weighted and FLAIR images. The

cases in which the T1 method failed to recognize the region were NL011 and NL024. T2

failed in cases NL011, NL024, and NL025. FLAIR failed in cases NL001, NL002, NL008,

NL012, Nl013, NL16, NL023, NL024 and NL035.
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(a)

(b)

(c)

Figure 3.28: Comparing 2-Step Naive Bayes Classifier ROC curves with threshold selec-

tion using modified J index for (a) T1-weighted, (b) T2-weighted, and (c)FLAIR
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Conclusion and Future Work

4.1 Conclusion

We first explored preliminary morphometry experiments (Section 3.1) on solely MRI-

positive cases of FCD. In Section 3.1.1 we presented identifying epileptogenic lesions

using computational models of cortical thickness with thresholding. The resulting sub-

jectwise sensitivity was 52%. There were five cases that were identified during pre-surgical

evaluation to depict cortical thickening. Considering solely these cases, 4/5 were correctly

colocalized. The implication of this is that solely using cortical thickness as a measure in

pre-surgical MRI examination, 5/31 cases would have the lesion identified. On the other

hand, using our approach described in 3.1.1, 16/31 cases would have lesions selected.

Thus there is an increased lesion detection rate using computational methods. However

the lesional sensitivity was 33% and the lesional specificity was 85%. This indicates that

while there was proper localization and low false detection rates, there was also an issue

of limited coverage.

In Section 3.1.2, we examined identifying epileptogenic lesions using the gradient

magnitude to monitor blurring of interface volumes with thresholding. The resulting

subjectwise sensitivity was 68% such that 21/31 cases are correctly colocalized by this

91
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method. The lesional sensitivity was 68% and lesional specificity 63%. While use of the

interface improved coverage of the lesion, it was at the expense of additional structures

being classified as false positives. 23/31 subjects were colocalized using both 3.1.1 and

3.1.2 methods with 9 of the cases being identified by one of the methods and the remain-

ing 14 being identified in both methods. While both methods identified the majority of

lesions, the fact that some cases were only picked up by a single method supports the

notion of combining features detection to avoid inevitable false negatives.

A supplementary experiment in Section 3.1.3 considered the impact of utilizing vol-

umetric T1-weighted images versus T2-weighted or FLAIR sequence acquisitions for ex-

amining the blurring of the gray-white interface. The respective subjectwise sensitivity

for T2 and FLAIR was 74% and 81%. While the lesional sensitivity of these methods was

on par with implementations with volumetric T1-weighted images, there outperformed

in terms of lesional specificity.

Following preliminary morphometry experiments, classification techniques consider-

ing the structural volumes and texture attribute volumes were applied (Section 3.2).

These experiments incorporated healthy controls and MRI-Positive subjects for training

and performed subject based leave-one-out validation. In Section 3.2.6, we evaluated

the performance of the various implementations relative to one another. While the 2-

Step SVM implementation did not out-perform any other classifier method in terms of

computed sensitivity or specificity values, using the ROC curves in combination with the

modified J index resulted in the largest threshold selected. The implication of this is that

the lesional clusters selected by the method are the largest (least susceptible to noise).

The implementation using the Random Forest is noteworthy as it has the highest lesional

sensitivity (81%) and the largest subjectwise sensitivity (94%). This implies that it offers

the best coverage of lesions. However the method also had the lowest lesional specificity

(67%) amongst all methods, implying that complete lesion coverage is at a cost of higher

false positives. The implementation utilizing the 2-Step Naive Bayes classifier ultimately
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produced the optimal results when considering the subjectwise specificity (100%), sub-

jectwise sensitivity (94%) and lesional specificity (75%). It also had the shortest runtime

(0.2 minutes). For this reason, the 2-Step Naive Bayes method was also applied to a

set of four MRI-negative subjects in Section 3.2.7. The subjectwise sensitivity, lesional

specificity, and lesional sensitivity were 50%, 25% and 94%. Thus, using classification

techniques, lesions were selected in two of the four subjects that were not selected for in

traditional MRI evaluation. Solely considering the results of the two correctly selected

subjects, the associated lesional specificity, and lesional sensitivity were 60% and 87%.

The low lesional specificity when considering all four cases is linked to differences in

the sizes of lesions in the subjects that were missed. This issue is further discussed in

future work. A final supplementary experiment comparing the implementation of the 2-

Step Naive Bayes classifier method on volumetric T1-weighted, T2-weighted and FLAIR

modalities was presented in Section 3.2.8, and the implementation on volumetric T1-

weighted images was found to offer the best results in this case.

Comparing the results of classification methods to the previous preliminary exper-

iments using thresholding, they had the opposite issue. The lesions had coverage but

they were not localized. The classification techniques performed well in terms of se-

lecting the correct structure but the issue was in over-selection. In adult cohorts for a

dataset of 18 FCD cases (11 MRI-Positive and 7 MRI-Negative) and 14 healthy controls

the resulting subjectwise specificity=100% and subjectwise sensitivity=83% using a 2-

step Naive Bayes classifier [ACB+03]. In the pediatric study we conducted for a dataset

of 35 FCD cases (31 MRI-Positive and 4 MRI-Negative) and 13 healthy controls, the

resulting subjectwise specificity=100% and subjectwise sensitivity=89% using the same

method, indicating that the technique performs similarly on developing brains. Incorpo-

rating computational techniques such as this one can assist inexperienced radiologists in

their detection, or provide initial hints for experienced radiologists on where to look for

the lesion.
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4.2 Future Work

In cases where the lesion is not restricted within a structure, the method faces diffi-

culties. Manual lesion selection would likely improve results, particularly in regards to

lesional sensitivity, however this is a time consuming task, as an expert would need to go

through slice by slice to select the lesion. An alternate approach to this issue would be

to incorporate some measure of spatial spread of selected lesional voxels. The number of

healthy controls available also created an issue as it was too small to split into training

and testing, and were therefore solely used for training. This likely contributes to the

high subjectwise specificity seen across techniques. Future work can explore the inclusion

of additional control cases.

Figure 4.1: Axial slice of sulcal volume generated from sulcal surface. Gives an indication

of linear distance and displacements, or depth of brain folds. Gyri are stored with negative

values and sulci with positive values.

Two of the established MRI morphometry features were explored (cortical thick-

ness and blurring of the gray/white matter interface). Although textural analysis has
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been linked to detecting abnormal signals, this morphometric feature was not specifically

developed into a volumetric model. Gray and white matter could be segmented and nor-

malized individually to generate volumes for detection of irregular signals (Figure 4.2).

Future work could also directly incorporate the remaining morphometry MRI feature,

namely abnormal sulcal pattern, into the model. A possible method to examine sulcal

behaviour could utilize the sulcal surfaces generated by FreeSurfer (Figure 4.1). Similar

to the method for cortical thickness where thickness surfaces were used to make thick-

ness volumes, in this case, the sulcal files would be used to produce sulcal fold volumes.

[IJM+09] described this approach of using sulcal files from Freesurfer with the water-

shed algorithm to extract sulcal pits as a means of evaluating sulcal folds. Following

this method would allow for easy integration into the classifier methodology we followed.

Additionally, the method conducted for preliminary cortical thickness experiments and

later incorporated into volumes for classification involved selecting vertices from confi-

dence masks considering each slice along the axial axis. A modification to this method

would be to also consider each slice along the coronal axis and then along the sagittal

axis, before finally combining the results of all 3 directions. The same could be done for

volumes produced for blurring of the interface.

Developing the experimental setup for classification followed methodology for sam-

pling rates described by [ACB+03]. Given that we are dealing with an unbalanced 2 class

problem, the argument could be made for other methods of synthetic sampling such as

SMOTE (Synthetic Minority Over-sampling Technique) [CBHK02] or under-sampling to

produce balance between the classes (lesional and non-lesional). When a small percent of

patients are in the minority class, classifiers are more sensitive to detecting the majority

class and less sensitive to the minority class. This causes the classifier output to be biased

towards predicting the majority.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Segmenting and normalizing gray and white matter for abnormal signal

detection. (a) Original T1-weighted, (b) Original T2-weighted, (c) Original FLAIR,

(d) T1-weighted white matter normalized, (e) T2-weighted white matter normalized,

(f) FLAIR white matter normalized, (g) T1-weighted gray matter normalized, (h) T2-

weighted gray matter normalized, (i) FLAIR gray matter normalized
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The training is the most important step in the classifier’s performance, thus it would

be useful to explore modifications to this step. On that note, incorporating some method

of feature selection is another possible modification. Some ideologies like decision trees

naturally perform feature selection within the method. However, this is not the case

for techniques like k-NN, which rely heavily on being provided useful information at the

start. Selecting individual features that provide more information as opposed to all of

them can possibly improve results. Other features to include in the future are Difference

Entropy which was shown in studies to perform well in detecting lesions.

Previous work in computer aided lesion detection have predominantly explored T1-

weighted images with some work in FLAIR, due to the thinner slices in T1 offering more

detail. While the work in Section 3.1.3 indicated T2 and FLAIR performed better using

thresholding, in Section 3.2.8 volumetric T1 outperformed in classification. Combining

information from multiple modalities into a unified model for classification would be a

possible consideration in the future.

The size of structures differed from cases to case and this affected performance eval-

uation. Lesional specificity is linked to the number of structures that the lesion falls

within. In some cases the lesion is only contained in a single structure label (i.e. NL005),

however for cases with many structures (i.e. Subject NL029 had 10 locations) failing

to completely select every structure would negatively contribute to lesional sensitivity.

Other methods have ranked selected regions on the basis of size and suspicion. Incorpo-

rating ranking into cluster output would offer a solution to dealing with the relatively

lower lesional specificity value in the 2-Step Naive Bayes Classifier.

FCD is characterized by localized variations, which was one of the reasons that even

in preliminary morphometry experiments with thresholding, there were satisfactory re-

sults. Current classification implementations [AWG+17] are leaning towards techniques

involving localized feature examination. Modifying the implementation so that the clas-

sifier considers subsets of regions at a time (”searchlight method”) is another variation on
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the method that could be explored. The idea of exploring a modified version of this was

considered using structural information, however there were issues in the balance of the

structures. In some cases only one subject had a lesion in a particular structure, so using

a leave-one-out approach meant that it would never be identified as lesional. However

many cases had a lesion in the same structure, thus this region would be over-selected.

For this reason it was not further explored in this study. On the other hand utilizing a

moving region of interest would not necessitate a balance in the structure labels.

SIFT (Scale Invariant Feature Transform) [Low99], although not specifically used for

FCD, has been promising for brain tumor detection [SH07]. The SIFT feature vector is

calculated from the neighborhood around a keypoint at different scales. For this reason,

localized structure is precisely recorded by SIFT. Due to the subtleties present in FCD,

it would be an interesting topic to explore or incorporate into classification. However,

manual tracing of lesions locations would likely be needed for the best results. This

method utilizes a one-class method of classification, also performed by [EAHCL13]. We

approached the problem as a two-class problem, however a one-class approach is another

area that could be examined. In particular, doing so and including MRI-negative cases in

the training data for classifying MRI-positive cases is a possibility in future work. With

the exception of 3.2.7, all experiments solely used MRI-Positive subjects. Incorporating

additional MRI-negative cases into training may contribute more in terms of recognizing

subtle deviations in abnormal cases and improving results.
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[FVDKD+04] Bruce Fischl, André Van Der Kouwe, Christophe Destrieux, Eric Hal-

gren, Florent Ségonne, David H Salat, Evelina Busa, Larry J Seidman,

Jill Goldstein, David Kennedy, et al. Automatically parcellating the hu-

man cerebral cortex. Cerebral cortex, 14(1):11–22, 2004.

[GW02] Rafael C Gonzalez and Richard E Woods. Digital image processing using

MATLAB, 2002.

[HB07] Mryka Hall-Beyer. The GLCM tutorial home page. Current Version, 2,

2007.

[HBS+16] Seok-Jun Hong, Boris C Bernhardt, Dewi S Schrader, Neda Bernasconi,

and Andrea Bernasconi. Whole-brain MRI phenotyping in dysplasia-

related frontal lobe epilepsy. Neurology, 86(7):643–650, 2016.

[HDO+98] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bern-

hard Scholkopf. Support vector machines. IEEE Intelligent Systems and

their applications, 13(4):18–28, 1998.

[HDVA+08] Chloe Hutton, Enrico De Vita, John Ashburner, Ralf Deichmann, and

Robert Turner. Voxel-based cortical thickness measurements in MRI. Neu-

roimage, 40(4):1701–1710, 2008.

[HGF+05] Hans-Jürgen Huppertz, Christina Grimm, Susanne Fauser, Jan Kassubek,

Irina Mader, Albrecht Hochmuth, Joachim Spreer, and Andreas Schulze-

Bonhage. Enhanced visualization of blurred gray–white matter junctions

in focal cortical dysplasia by voxel-based 3D MRI analysis. Epilepsy re-

search, 67(1):35–50, 2005.



Bibliography 104

[HHKT16] Li-Yu Hu, Min-Wei Huang, Shih-Wen Ke, and Chih-Fong Tsai. The

distance function effect on k-nearest neighbor classification for medical

datasets. SpringerPlus, 5(1):1304, 2016.

[HHZ06] Torsten Hothorn, Kurt Hornik, and Achim Zeileis. Unbiased recursive par-

titioning: A conditional inference framework. Journal of Computational

and Graphical statistics, 15(3):651–674, 2006.

[HJS+06] Xiao Han, Jorge Jovicich, David Salat, Andre van der Kouwe, Brian

Quinn, Silvester Czanner, Evelina Busa, Jenni Pacheco, Marilyn Albert,

Ronald Killiany, et al. Reliability of MRI-derived measurements of human

cerebral cortical thickness: the effects of field strength, scanner upgrade

and manufacturer. Neuroimage, 32(1):180–194, 2006.

[HKS+14] Seok-Jun Hong, Hosung Kim, Dewi Schrader, Neda Bernasconi, Boris C

Bernhardt, and Andrea Bernasconi. Automated detection of cortical dys-

plasia type II in MRI-negative epilepsy. Neurology, 83(1):48–55, 2014.

[HS+73] Robert M Haralick, Karthikeyan Shanmugam, et al. Textural features for

image classification. IEEE Transactions on systems, man, and cybernetics,

(6):610–621, 1973.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Overview of

supervised learning. In The elements of statistical learning, pages 9–41.

Springer, 2009.

[HV03] David J Hand and Veronica Vinciotti. Choosing k for two-class nearest

neighbour classifiers with unbalanced classes. Pattern recognition letters,

24(9):1555–1562, 2003.

[HW88] M Hajek and HG Wieser. Extratemporal, mainly frontal, epilepsies: sur-

gical results. Journal of Epilepsy, 1(3):103–119, 1988.



Bibliography 105

[IJM+09] Kiho Im, Hang Joon Jo, Jean-François Mangin, Alan C Evans, Sun I

Kim, and Jong-Min Lee. Spatial distribution of deep sulcal landmarks

and hemispherical asymmetry on the cortical surface. Cerebral cortex,

20(3):602–611, 2009.

[Ize08] Alan Julian Izenman. Modern multivariate statistical techniques, volume 1.

Springer, 2008.

[JCG+06] Jorge Jovicich, Silvester Czanner, Douglas Greve, Elizabeth Haley, Andre

van der Kouwe, Randy Gollub, David Kennedy, Franz Schmitt, Gregory

Brown, James MacFall, et al. Reliability in multi-site structural MRI

studies: effects of gradient non-linearity correction on phantom and human

data. Neuroimage, 30(2):436–443, 2006.

[JKS95] Ramesh Jain, Rangachar Kasturi, and Brian G Schunck. Machine vision,

volume 5. McGraw-Hill New York, 1995.

[JMN13] Jana Jarecki, Björn Meder, and Jonathan D Nelson. The assumption of

class-conditional independence in category learning. In CogSci, 2013.

[JNB+07] Lara E Jeha, Imad Najm, William Bingaman, Dudley Dinner, Peter
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Baranauskas. How many trees in a random forest? In MLDM, pages

154–168. Springer, 2012.

[Per07] David Perlman. Cortical thickness: Practicalities and comparisons. Uni-

versity of Wisconsin Statistics, 692, 2007.

[PVL+14] Chintan Parmar, Emmanuel Rios Velazquez, Ralph Leijenaar, Mohammed

Jermoumi, Sara Carvalho, Raymond H Mak, Sushmita Mitra, B Uma

Shankar, Ron Kikinis, Benjamin Haibe-Kains, et al. Robust radiomics

feature quantification using semiautomatic volumetric segmentation. PloS

one, 9(7):e102107, 2014.



Bibliography 108

[Ras63] Theodore Rasmussen. Surgical therapy of frontal lobe epilepsy. Epilepsia,

4(1-4):181–198, 1963.
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MR Sperling, H Lüders, and Timothy A Pedley. Proposal for a new clas-

sification of outcome with respect to epileptic seizures following epilepsy

surgery. Epilepsia, 42(2):282–286, 2001.

[WCK+98] Elaine Wyllie, Youssef G Comair, Prakash Kotagal, Juan Bulacio, William

Bingaman, and Paul Ruggieri. Seizure outcome after epilepsy surgery in

children and adolescents. Annals of neurology, 44(5):740–748, 1998.

[You50] William J Youden. Index for rating diagnostic tests. Cancer, 3(1):32–35,

1950.

[ZRP+11] HB Zaman, P Robinson, M Petrou, P Olivier, TK Shih, SA Velastin,

and I Nystrom. Visual informatics: Sustaining research and innovations.

LNCS, Springer. ISBN, pages 978–3, 2011.

[ZS10] Heping Zhang and Burton Singer. Recursive partitioning and applications.

Springer Science & Business Media, 2010.



Bibliography 110

[ZW09] Heping Zhang and Minghui Wang. Search for the smallest random forest.

Statistics and its Interface, 2(3):381, 2009.


	Introduction
	Focal Cortical Dysplasia
	Literature Review
	Objective
	Outline

	Background Information
	Software
	Data Description
	Methods of Measuring Performance
	Common Features of T1-weighted MRI – Cortical Thickness and Blurring of Gray-White Matter Interface
	Classification Techniques
	Introduction to Classification
	k-Nearest Neighbour (k-NN)
	Decision Trees
	Conditional Inference Tree
	Random Forests
	Naive Bayes Classification
	Support Vector Machines

	Introduction to Textural Analysis

	Experiment and Results
	Preliminary Morphometry Experiments
	Identifying Epileptogenic Lesions using Cortical Thickness Mappings
	Identifying Epileptogenic Lesions using Blurring along Gray-White Matter Interface
	Comparing results of T1, T2, and FLAIR acquisitions using Blurring along Gray-White Matter Interface

	Identifying Epileptogenic Lesions using Classification Techniques
	Background
	Experimental Setup
	Preliminary Performance Assessment Experiment - Comparative Study
	2-Step Naive Bayes Classifier
	2-Step SVM Classifier
	Evaluating Technique Performances
	A Study of MRI-negative Cases using 2-Step Naive Bayes Classifier
	Comparing Performance of 2-Step Naive Bayes Classifier for T1, T2, FLAIR implementations


	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

