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Abstract

Breast Magnetic Resonance Imaging (MRI) is a reliable imaging tool for localization and

evaluation of lesions prior to breast conserving surgery (BCS). MR images typically will

be used to determine the size and location of the tumours before making the incision in

order to minimize the amount of tissue excised. The arm position and configuration of

the breast during and prior to surgery are different and one question is whether it would

be possible to match the two configurations. This matching process can potentially be

used in development of tools to guide surgeons in the incision process. Recently, a Thin-

Plate-Spline (TPS) algorithm has been proposed to assess the feasibility of breast tissue

matching using fiducial surface markers in two different arm positions. The registration

algorithm uses the surface markers only and does not employ the image intensities. In

this Thesis, I apply and evaluate a coherent point drift (CPD) algorithm for registration

of 3D breast MR images of six patient volunteers. In particular, we evaluate the results

of the previous TPS registration technique to the proposed rigid, affine, and deformable

CPD registration algorithms on the same patient datasets. The results suggest that the

CPD deformable registration algorithm is superior in correcting the motion of the breast

compared to CPD rigid, affine and TPS registration algorithms. The CPD registration

results reported in this thesis took 0.2 to 0.4 seconds, which is significantly lower than the

computation time using TPS (under a minute).
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Chapter 1

Introduction

1.1 Image Registration

Image registration is the task of aligning one image to another image. In a day and

age where cameras are ubiquitous items, registration techniques find applications in many

areas, such as image stitching applications [SF00,Bro92,ZF03]. Another important applica-

tion of image registration is in a clinical setting, where imaging equipment are indispensable

diagnostic tools. It is useful at times for physicians to obtain images of the same region

with different imaging methods, such as X-rays and magnetic resonance imaging (MRI),

since different imaging methods contrast various body tissues differently. To extract infor-

mation from two images taken at different times, it may be necessary to align or register

1



2 Chapter 1. Introduction

the images together to see certain features in relation to other anatomical features. The

procedure involves a geometric transformation that includes matching of corresponding

points or image features on the images by trying to maximize the similarity between such

points or the images while estimating the transformation parameters. A typical image

registration algorithm consists of four components: (1) a similarity measure that penalizes

the dissimilarity between the two images; (2) a series of geometric transformations that

can be applied to the moving image for the spatially warping step; (3) an optimizer that

searches for the optimized transformation that maximizes the similarity; and (4) an inter-

polator that interpolates image intensities at non-grid locations of the transformed moving

image [Bro92,SLZ+12,MV98].

1.2 Types of Images

The term “Medical Image” covers a wide variety of types of images, with very different

underlying physical principles, and very different applications. The sort of images used in

health care and medical research vary from microscopic images of histological sections to

video images used for remote consultation, and from images of the eye taken with a camera

to whole body radioisotope images. In principle, medical image registration could involve

bringing all the information from a given patient, whatever the form, together into a sin-
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gle representation record. Recent developments in medical image registration have been

driven less by this dream of unifying image information than by the practical desire to

make better use of certain types of image information for specific clinical applications or in

medical research. The main radiological imaging modalities includes traditional projection

radiographs, with or without contrast and subtraction, nuclear medicine projection im-

ages, ultrasound images and the cross-sectional modalities of x-ray computed tomography

(CT), magnetic resonance imaging (MRI), single photon emission computed tomography

(SPECT) and positron emission tomography (PET).

We refer to the MRI modality in this thesis which is a medical imaging technology

that uses radio waves and a magnetic field to create detailed images of organs and tissues.

Furthermore, MRI has proven to be highly effective in diagnosing a number of conditions

by showing the difference between normal and diseased soft tissues of the body. MRI is

often used to visualize blood vessels, abnormal tissue, breasts, bones and joints, organs in

the pelvis, chest and abdomen (heart, liver, kidney, spleen), spinal injuries, tendon and

ligament tears [BKZ04].
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1.3 Image Registration Methods

Image registration is the process of finding a transformation on the coordinates of the

pixels or voxels of one image to align it to another. Registration techniques can generally

be divided into two categories:

1. Landmark-based registration

Landmark-based or geometry-based methods use markers or features of the image and

track the movement of these markers or features. Because landmark-based methods

rely on features in the image, such methods require fiducial markers1 or segmentation

to be performed beforehand. On the other hand, a set of corresponding fiducial pairs

are selected to specify a transformation that aligns the points. The fiducials are

localized by interactive visual identification of anatomical landmarks. Commonly

used methods for aligning two sets of corresponding fiducial points involve iterative

closest point (ICP) [BM92] and thin plate spline (TPS) [B+89]. ICP was proposed to

represent a key approach for registering 3D shapes (including free-form curves and

surfaces), which minimizes the distance from the source to the reference points. TPS

defines a unique smooth registration from a template image to a target image based

on registering corresponding landmarks.
1Fiducial marker placement uses imaging guidance to place small metal objects called fiducial markers

in or near a tumor in preparation for performing MR imaging.
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The methods of aligning two sets of corresponding points on the surfaces are similar to

the point- based registration methods. It involves determining corresponding surfaces

in different images (and/or physical space) and computing the transformation that

best aligns these surfaces [SF00]. The surface representation can be simply a point

set (i.e. a collection of points on the surfaces), a faceted surface (e.g. triangle set),

an implicit surface, or a parametric surface.

2. Intensity-Based Methods

Intensity-based methods perform registration based on pixel or voxel intensities of the

images and do not single out features. Hence, the transformation of intensity-based

registration is determined by iteratively optimizing the similarity measure, which is

calculated from all pixel or voxel intensity values [SF00].

This thesis will solely relate to landmark-based methods.

1.4 Objective

Breast Magnetic Resonance Imaging (MRI) is a reliable imaging tool for localization

and evaluation of lesions prior to breast conserving surgery (BCS).

Usually, breast MRI is performed in the prone position, where the breasts are pendant

into the imaging coils to overcome motion artifacts from respiration thereby providing high
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resolution imaging. However in this configuration, the breast shape is different compared

to the actual configuration in the operating room table [ESM+14]. A goal is to develop a

computer assisted surgery (CAS) tool by assigning correspondences between two configu-

rations to recover the transformation that maps one to the other. The results in [ESM+14]

are based on matching of two configurations, namely supine arm up and supine arm down

positions. Specifically, the scheme applies fiducial surface markers in these two different

arm positions that describe the breast surface. The registration algorithm uses the surface

markers only and does not employ the image intensities. The aim of the algorithm is to find

the correspondence between the markers as well as the transformation that matches one

configuration to the other. Although, we only try to find the map between markers which

are placed on the surface of breasts, internal breast tissues including the tumour inside are

connected to the surface. One Movement even internal or external affects another.

In addition, the comparison between pre-operative images and intra-operative images

is essential to image-guided procedures. Intra-operative images provide live positional

updates, while pre-operative images provide important anatomical details.

In this thesis, we apply a probabilistic method, called the Coherent Point Drift (CPD),

introduced by Myronenko et al. [MS10], for rigid, affine and deformable point set reg-

istration on the three-dimensional (3D) breast MRI datasets of six patient volunteers

in [ESM+14]. We then determine the accuracy and computational time of the three
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CPD registration algorithms and provide a comparison between these and the TPS al-

gorithm [ESM+14].

1.5 Literature Survey

1.5.1 Introduction to the Registration in Medical Applications

While the incidence and mortality rates of breast cancer vary internationally, cur-

rently it is the most commonly diagnosed cancer among women in most parts of the

world [JCDW10]. In Canada, breast cancer accounts for the second cause of cancer deaths

despite the significant improvement in survival rates since the mid-80s [SoCACoRR87].

Currently the 5-year survival rate is 87%, likely as a result of advances in treatment and

breast cancer screening. Breast cancer develops through multiple stages and the reason

why some tumors eventually become invasive and metastatic and some of them remain

non-invasive pre-cancers is still under investigation. Thus, detection, diagnosis and inter-

ventions could benefit from combining information from different images or aligning images.

To achieve this goal, establishing accurate correspondence between images or between im-

ages and a real world setting is required. The breast is a soft organ and is subject to large

deformations when the patient position is changed. Different procedures require differ-

ent patient setups to optimize image acquisition (e.g prone Magnetic Resonance Imaging),
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improve patient stability and comfort (e.g supine radiotherapy treatment) or account for

practical circumstances (e.g. supine surgical position).

Many papers have been published presenting methods to extract or present a surface

before applying surface-based registration methods. In general, the surface can be repre-

sented by parameterizing the surface. Then the difference between B-spline and polynomial

become obvious [CC78]. The control in shape change is better achieved with B-spline curves

than the polynomial curves. The degree of the curve is not dependent on the total number

of points. B-splines are made of several curve segments that are joined “smoothly.” Each

such curve segment is controlled by a couple of consecutive control points. Thus, a change

in the position of a control point only propagates upto a predictable range. Based on the

brief given explanation, B-spline, which is the method related to the parametric surface,

is a global method and the polynomial is a local one. We are looking to apply a piecewise

method in order to have a large deformation available in this research.

Thus, the surface can be represented as a cloud of points or a triangulated surface. In

this situation interpolation is required, incrementing the computing time and decrementing

the quality of the point signature. Surface meshing techniques are general way to create

a surface out of points, and currently there are two algorithms provided: a very fast

triangulation of the original points, and a slower meshing that does smoothing and hole

filling as well. Creating a convex hull [BDH96,PH77] is useful for example when there is a



1.5 Literature Survey 9

need for a simplified surface representation or when boundaries need to be extracted.

Also, many algorithms exist for rigid and non-rigid alignment of point sets or images

[Mod09] and many papers have been published presenting these algorithms to register two

configurations to find a reasonable transformation that maps one configuration to another.

A general reviews and surveys of these can be found in [Sti86,Pea94,PBSS00,LH03,Tan05].

1.5.2 Iterative Closest Point Algorithm

The Iterative Closest Point (ICP) algorithm was introduced in 1991 by Chen and

Medioni [CM92] and independently by Besl and McKay [BM92] and it was further de-

veloped by various researchers. ICP algorithm is one of the most popular methods for

rigid point set registration due to its simplicity and low computational complexity. ICP

iteratively assigns correspondences based on a closest distance criterion and finds the least-

squares rigid transformation relating the two point sets. In this work, the model point set

will be denoted Q = {q1, q2, ..., qN} and the data point set P = {p1, p2, ..., pN}. In each

iteration step, the algorithm selects the closest points as correspondences and calculates

the transformation, normally rotation (R) and translation (T). In order to formulate the

goodness of fit mathematically, an error metric, or objective function E is defined.

E =
N∑
i=1

wi,j‖Rpi + T − qi‖2. (1.1)
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R and T represent rotation and translation. wi,j are the weights. These are presented as

wi,j = 1, if qi is the closest point to pi and wi,j = 0 otherwise.

1.5.3 Thin Plate Spline Algorithm

In this section, a detailed description of the TPS landmark-based registration is pre-

sented. The idea of TPSs was initially introduced in the pioneering work of Duchon [Duc76]

and was later employed for image registration such as Fair book [Mod09] and the arti-

cles within. Let tj = [t1j , t
2
j , t

3
j ] denote the position of the jth landmark located during

surgery (in this study this is taken to be the location of the markers in the arm up im-

age) and rj = [r1
j , r

2
j , r

3
j ] the position of the corresponding landmark in the pre-surgical

image, j = 1, 2, . . . , n, where n is the number of given landmarks. The goal is to find the

transformation y : R3 → R3, such that

y(rj) = tj for all j = 1, 2, . . . , n (1.2)

which minimizes the objective function

S[y] =

∫
Ω

3∑
i,p,q=1

(∂p,qy
i(x))2 dx. (1.3)
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This is the linearized bending energy of a thin plate in 3D, where p and q are coordinates,

that imposes some kind of smoothness on y. It has been shown [Duc76] that the solution of

component yi of the unknown transformation y belongs to a certain space that is spanned

by shifts of an a-priori known function and a polynomial correction term. To be precise,

in 3D

yi(x) =
n∑
j=1

cij‖x− rj‖+ ωi0 + ωi1x
1 + ωi2x

2 + ωi3x
3, i = 1, 2, 3. (1.4)

Fortunately the solution can be obtained by solving a linear system of equations to evaluate

the coefficients of this expression. If we define A = [‖rk−rj‖] ∈ Rn,n, ti = [ti1, t
i
2, t

i
3]T ∈ Rn,1,

ci = [ci1, c
i
2, . . . , c

i
n]T ∈ Rn,1, ωi = [ωi0, ω

i
1, ω

i
2, ω

i
3]T ∈ R4,1 and B = [e, r] ∈ Rn,4, where

e = [1, ..., 1]T ∈ Rn,1, r = [rij] ∈ Rn,3, the landmark correspondence and the transformation

energy minimization condition yields

 A B

BT 04,4


ci
ωi

 =

 ti

04,1

 (1.5)

for i = 1, 2, 3, see [Mod09].

Hence, by substituting the evaluated coefficients ci, wi we can determine yi as well as

the desired unknown transformation y.



Chapter 2

Datasets Visualization

2.1 Breast Anatomy

The breast is a modified skin gland that lies on top of the musculature that encases

the chest wall. The breast is not completely separated from these muscles, in fact only a

layer of adipose tissue and connective fascia separate the breast from the pectoral muscle.

Figure 2.1: Anatomy of the breast which is taken from [LLC09a].

12
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The breast is composed of three major tissue types: glandular tissue (parenchyma), fibrous

stroma and fatty tissue. The stroma is composed of connective tissue, ligaments, blood

vessels, lymphatics, lymph nodes, and nerves [ML05] and its main function is to provide

support and to nurture the breast. The glandular tissue is organized in a ductal system

with a distribution that is essentially bilateral between the right and left breast. Current

literature agrees that the parenchyma of the breast consists of about 10 to 20 lobes, each of

which has a lactiferous major duct that opens on the nipple through a little antechamber

called the lactiferous sinus (see Figure 2.1). Starting at the nipple, the ductal system splits

up in branches that reach the back of the breast. At the end of each branch are the lobules

that produce milk. Each lobule is composed of acini that empty into the terminal ducts.

Figure 2.2 shows annotated orthogonal slices of a 3D MR image of a breast. These

images were acquired with the patient lying on her front (i.e. prone), her arms by her

side and her breasts hanging under gravitational pull in the double breast coil. In this

example and in general fatty and fibroglandular tissue can easily be discriminated due to

their different properties [ML05].

2.2 Tumour Segmentation

The TurtleSeg software [THA11] was used to segment the datasets which is an interac-

tive segmentation tool designed for 3D medical images. A typical workflow involves having
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Figure 2.2: Illustration of the normal breast anatomy and its appearance on a high-
resolution MR image. Tissue marked as fibroglandular includes milk ducts, glandular
lobules and connective tissue as depicted in Figure 2.1.(Image is taken from [LLC09b]).

the user load a 3D image and then interactively contour a sparse number of different slices.

The full 3D segmentation is then built automatically. The software has many features that

will help before one starts applying matching algorithm and has automated assistance for

guiding users towards better segmentations. Also, it can import and export many 3D file

formats, including DICOM (Digital Imaging and Communications in Medicine) which is

the available MRI image format in this research. The best features that specify this soft-

ware in our research is to able us to export an image mask or surface mesh and then make

a full contour editing support that easily allows fixing mistakes.



2.2 Tumour Segmentation 15

Figure 2.3: 3D tumour segmentation of patient no.1 (arm up position) using TurtleSeg
software.

Overall, this type of segmentation enables us to separate the tumour of the breast from

the surface then contour it semi-manually and use it to build the 3D tumour segmentation

of datasets. The dataset is also exported in DICOM image format. Next, the data is

exported as a mesh in a .vtk file format and can save as mesh files for further processing.

Figure 2.3 shows semi-automatic segmentation of tumours.



Chapter 3

Preliminary Notes

3.1 Software

MATLAB1 was chosen for implementation due to its simplicity, its arsenal of built-

in functions and image viewing tools, and handy debugging tools . Although not the

fastest or most efficient language (compared to C, for example), MATLAB is geared toward

mathematical applications so one can write technical code in a straightforward manner

without having to deal with the intricacies of programming in a language like C. Because

this project focuses on the mathematical modelling aspects of image registration, speed

and efficient use of computational resources were not top priority.

TurtleSeg software was used to segment the tumour in patient datasets. It is an inter-

active 3D image segmentation tool designed for 3D medical images [THA11]. TurtleSeg
12016 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may
be trademarks or registered trademarks of their respective holders.

16
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implements techniques that allow the user to provide intuitive yet minimal interaction for

guiding the 3D segmentation process.

Another Tutorial about introduction to image registration and the design of efficient

and stable state of the algorithms are provided by J. Modersitzki [Mod09]. The publicly

available FAIR toolbox which enables easy access to even complex schemes are the main

source in the image registration researches. It is because the tutorial enables participants

to use the software, explore existing registration techniques, and to design and develop new

solutions. Jan Modersitzki [Mod09] also has an accompanying book of the same name that

documents the code. To avoid re-inventing the wheel, our codes are written as an add-on

to FAIR, keeping a similar workflow and using FAIR code whenever possible.

Another application which is called MeVisLab was chosen since it is a cross-platform

application framework for medical image processing and visualization. It has some features,

for instance, 2D image viewing and volume rendering. Furthermore, DICOM format is

supported via an import to this application.

3.2 The Gaussian Mixture Model

In 1738, eighty five years after the correspondence between Pierre de Fermat and Blaise

Pascal, through which the groundwork of theory was developed, the French mathematician

Abraham de Moivre published the second edition of his “The Doctrine of Chances,” [DM56].
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It included a theorem with the first appearance of the normal probability law. However,

De Moivre failed to recognize its importance as a probability density function and thus

did not realize that he actually formulated what was later going to be one of the most fa-

mous formulas in the history of science [Sti86]. It was not until 1809, when Carl Friedrich

Gauss introduced the concept of the normal distribution which is also called the Gaussian

distribution, after him. However, the normal distribution took the form used in modern

literature with the contributions of P. S. Laplace, K. Pearson and R. A. Fisher. Karl Pear-

son, besides his many other contributions to mathematical statistics, also is the first author

to model a dataset coming from two different populations crab as a mixture of two Gaus-

sian distributions [Pea94]. Pearson suggested fitting a mixture of two univariate normal

distributions to the data, initiating the development of mixture modeling. However, the

complexity of the parameter estimation problem in mixture models prevented the advance

of research in this area until modern computational techniques were developed. Technology

have come a long way since then, and advancements in mixture modeling followed. Un-

like Pearson’s crabs, the Gaussian mixture model can be used for cluster analysis. Hence,

in a case where X ∈ Rn×p are given (p dimensional data of size n), would be interested

in estimating the number of populations (also referred as groups, clusters, classes, K),

and the class membership of each observation (ŷi|X, i = 1, 2, . . . , n; ŷi ∈ 1, 2, . . . , K). The

Gaussian mixture model, in this case, is a useful tool to the researcher by fitting a mixture
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of probability density functions to the given data, thus allowing implementation of other

formal statistical procedures for estimation and optimization.

Thus, a Gaussian mixture model is a probabilistic model that assuming the observations

xij, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , p} come from a mixture of K underlying probability

distributions, each corresponding to a different cluster, the mixture density is given by,

f(x;w, θ) =
K∑
k=1

wkgk(x; θk) (3.1)

Here w1, . . . , wK are the mixing proportions that satisfy 0 ≤ wk ≤ 1 and
∑K

k=1 wk = 1 is

the vector of unknown parameters of the kth component, and wk represents the probability

that an observation belongs to the kth component.

The Gaussian mixture model assumes that the components of the mixture are multi-

variate normal, thus the density becomes,

f(x;µ, σ) =
K∑
k=1

wkgk(x;µk, σk) (3.2)

The mixture components (i.e. clusters) in Figure 3.1 are ellipsoids centered at µk, while the

covariance matrices σk represent other geometric characteristics of the clusters [TSM85].
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Figure 3.1: Gaussian mixture density for K = 3 clusters.

For instance, the component densities gk are given by

gk(x;µk, σk) =
1

(2π)p/2
wk
|σk|1/2

exp

(
−1

2
(x− µk)Tσ−1

k (x− µk)
)

(3.3)

or we can rewrite it as:

gk(x;µk, σk) =
1

(2π)p/2
wk
|σk|1/2

exp

(
−‖x− µk‖

2

2σ2
k

)
. (3.4)

To demonstrate this, the Gaussian mixture density is fitted to a univariate dataset with

K = 3 groups. The histogram of this data and the mixture density fit can be seen in

Figure 3.1.
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3.3 Parametric Transformations

Michel et al. [ZF03] presents a literature survey of automatic 3D surface registration

techniques and mentions red that surface registration can be categories into three subjects:

1. Choice of transformation;

2. Elaboration of surface representation and similarity criterion;

3. Matching and global optimization.

The motivation of this mentioned paper is to provide a detailed overview of surface reg-

istration techniques which can be applied to the anatomical surfaces. Furthermore, the

paper presents the assumptions about the type of relation between the two 3D surfaces

which is appropriate for mapping two point sets. There are three categories:

1. Rigid-body transformation;

2. Affine transformation;

3. Non-rigid transformation.

Various parametric transformations on a point x = (x1, x2)T ∈ R2 or x = (x1, x2, x3)T ∈ R3

are defined in this section. Each transformation is parameterized by w. Superscripts 1, 2,

and 3 each relate to the x, y, and z coordinates in the Cartesian coordinate system,

respectively.
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3.3.1 Rigid Transformation

As I mentioned above, a general form of rigid body transformation can be expressed as

combination of a rotation and a translation.

• 2D Rigid: In 2D, w contains 3 parameters: 1 rotation (w1) and 2 translations

(w2;w3). (Some conventions may refer to translations as shifts.) A rigid transforma-

tion on x is

y(w, x) =

cosw1 − sinw1

sinw1 cosw1

x+

w2

w3

 . (3.5)

• 2D Rigid - Inverse: The inverse transform can be obtained by inverting the transla-

tion and then the rotation. The inverse transformation would simply involve negating

the translation terms and rotating in the opposite direction:

x =

cos(−w1) − sin(−w1)

sin(−w1) cos(−w1)


y −

w2

w3




=

cos(w1) − sin(w1)

sin(w1) cos(w1)


T y −

w2

w3


 . (3.6)

• 3D Rigid: In 3D, the transformation consists of 3 rotations followed by 3 transla-

tions:

y(w, x) = R1(w1)R2(w2)R3(w3)x+ (w4, w5, w6)T (3.7)
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where w4, w5, and w6 are translations in the x, y, and z directions, respectively. If

w1, w2, and w3 are angles of rotation about x, y, and z axes, rotation operations

about the x, y, and z axes are defined to be

R1(w1) =


1 0 0

0 cosw1 − sinw1

0 sinw1 cosw1

 , R2(w2) =


cosw2 0 sinw2

0 1 0

− sinw2 0 cosw2

 ,

R3(w3) =


cosw3 − sinw3 0

sinw3 cosw3 0

0 0 1

 . (3.8)

• 3D Rigid - Inverse: For convenience, let us define the composition of the three ro-

tations to be Rw = R1(w1)R2(w2)R3(w3). As in the 2D case, if the forward transform

is

y(w, x) = Rx+ (w4, w5, w6)T (3.9)

then

x = R−1
w

y −

w4

w5

w6



 = RT
w

y −

w4

w5

w6



 , (3.10)

since the matrix Rw is orthogonal.
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3.3.2 Affine Transformation

The affine transformation was applied in this research. In addition to translation and

rotation, an affine transformation allows for shearing and in particular, for scaling.

• 2D Affine: In 2D, the affine transformation is parametrized by 6 parameters w =

(w1, w2, . . . , w6). If we define

A =

w1 w2

w4 w5

 , b =

w3

w6

 , (3.11)

the transformation on a point x = (x1, x2)T is y(w, x) = Ax+ b.

• 2D Affine - Inverse: Assuming that A is invertible, the inverse process is similar

to the rigid case. We obtain x = A−1(y − b). In registering images of real objects,

transformations are required to be realistic and physically feasible. It is safe to

assume that all parametric transformations in this thesis, are physically feasible and

therefore non-degenerate and invertible.

• 3D Affine: If we define

A =


w1 w2 w3

w5 w6 w7

w9 w10 w11

 , b =


w4

w8

w12

 , (3.12)
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then an 3D affine transformation on a point with coordinates x = (x1, x2, x3)T is

defined as y(w, x) = Ax+ b.

• 3D Affine - Inverse: Again, assuming that the transformation A is physically

feasible and therefore invertible, x = A−1(y − b).

The following explanation has been added regarding the different categories of the affine

transformations: Suppose A and B are the two data sets that we want to map A to B

using function f . As can be seen in the following Figure 3.3.2, there are three different

situations:

• f : A→ B is surjective (or onto) if f(A) = B; that is, f is surjective if every element

of B is the image of at least one element of A.

• f : A→ B is injective (or one-to-one) if each element in the range of f is the image

of exactly one element of A; that is, f is injective if f(x) = f(y) implies x = y.

• f : A→ B is bijective if it is both surjective and injective.
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The above explanation shows that f has an inverse if and only if f is a bijection.

Moreover, for one to one affine transformation A always has less number of elements which

technically happens in many registration applications. We always want to register a point

cloud with a set of guiding points.

For many applications the transformation must be one-to-one. All rigid, and almost all

affine are one- to- one. Also one of the other characteristic in the affine transformation is

that it does not in general preserve angles or lengths, but parallel lines remain parallel.

Maintz et al. [MvdEV96] proposed a survey paper about various types of paramet-

ric transformation. They introduced the non-rigid transformation and in addition, they

expressed that the nonrigid transformation can be separated as three partitions: generaliza-

tion of rigid body motion, global polynomial functions, and local non-rigid transformations.

In most of the studies, rigid-body registration is mostly command. Alignments are only

made by translation and rotation to match two datasets. While rigid registration is gen-

erally employed to reduce computational cost and to speed up the registration process,

it risks oversimplifying the movement of body tissues, which are generally not rigid. The

highly deformable nature of the breast and displacement at various positions makes reg-

istration of the breast region challenging. Registration accuracy at the millimetre scale is

important during image-guided breast intervention, but is influenced by various imaging

parameters. Deformable registration may be more accurate, but is computationally much

more expensive.
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3.4 Optimization

In registration framework, we have to iteratively minimize or maximize the cost function

and update parameters. We will use the terms optimization and minimization interchange-

ably in this thesis, since the maximization of a function is equivalent to the minimization

of the negative of the function. The function is usually called the objective function or the

cost because it is the value in question we want to reduce or a penalty to be avoided.

The fact that image registration is an optimization problem benefits itself from a vast

amount of literature on one of the most studied subject in mathematics. Popular opti-

mization methods include gradient descent [NW06], conjugate gradient [Møl93], Newton

type (quasi-Newton [DM77], Gauss-Newton [NW06], etc.). However, every benefit has its

pay-off. The various availabilities of optimisation methods trigger two problems: the choice

of optimisation methods and the parameter settings for optimisation problems. Since this

measure depends on crude image values, without extracting and using any additional in-

formation, it works best on images of the same modality, i.e. images taken with the same

type of imaging equipment [HM04].

In the next chapter, image registration is introduced as a minimization problem by

introducing the Coherent Point Drift algorithm and various issues surrounding it will be

discussed.
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3.5 Interpolation

Since the registration problem is a discretized one, interpolation is needed to compute

the discrete transformed coordinates and the transformed template image.

T (x) is well-defined, but for a givenw, y(w;x) likely will not coincide with gridpoints

of x. Thus, T (y(w;x)) is technically not defined. An interpolation step is necessary to

compute the transformed template image over the discrete domain. Thus, the registration

problem is a highly non-linear one and a closed-form solution can not be found. For this

reason we must numerically optimize the problem to find a solution. For simplicity, a linear

interpolator will be used for registration experiments presented in this thesis.

Linear interpolation is a reasonable tool in image registration. The interpolant can be

evaluated with low computational costs and has attractive features. For example, the values

of the interpolant do not exceed the interval spanned by the data, and the interpolation

Figure 3.2: Linear interpolation (it is taken from [Mod09]).
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has no spurious oscillations. However, although the interpolant is differentiable almost

everywhere, it is not differentiable at the grid points. Linear interpolation is thus the

interpolation method of choice when no derivatives are needed. In order to benefit from

fast and efficient optimization schemes, smoother interpolants are needed.



Chapter 4

Materials and Methods

4.1 Coherent Point Drift (CPD) Registration Algorithm

In this section, a description of the CPD landmark-based registration is presented.

Originally introduced by Myronenko et al. [MSCP06], the proposed method is a true prob-

abilistic approach and is shown to be accurate and robust in the presence of outliers and

missing points, and is effective for estimation of complex non-linear deformable transfor-

mations.

A few basic equalities that are often used during the explanation of the CPD algorithm

are

• Conditional probabilities

p(A ∩B) = p(A|B)p(B), (4.1)

30
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• Bayes’ rule

p(B|A) =
p(A|B)p(B)

P (A)
, (4.2)

• if
⋃K
i=1Bi = Ω and ∀i 6= j : Bi ∩Bj = ∅ then

p(A) =
K∑
i=1

p(A ∩Bi). (4.3)

4.1.1 Gaussian Mixture Model

The method begins with a template set of points Y = (y1,y2, . . . ,yM)T where each

yi ∈ Rd. In practice, Y can be treated as a matrix in RM×d. Using Y , one can create a

Gaussian mixture model with the yi acting as the mean values. To be precise, if Z is the

random variable denoting position then given the jth element of Y , Z is distributed as a

Gaussian with mean yj and covariance Cj. If we further denote the probability of choosing

the jth element of Y as 0 ≤ wj ≤ 1 then conditioning on j,

P (Z = z;Y ) =
M∑
j=1

P (Z = z|yj)P (j)

=
1

(2π)d/2

M∑
j=1

wj
(detCj)1/2

exp

(
−(z− yj)

TC
−1
j

2
(z− yj)

)
. (4.4)
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If we assume an isotropic covariance common to all the points then Cj = σ2Id and the

points are all equally likely then wj = 1
M
, simplifies (4.4) to1

P (Z = z;Y ) =
1

(2πσ2)d/2M

M∑
j=1

e−
1

2σ2
‖z−yj‖22 . (4.5)

Using this induced probability distribution, we consider likelihood, L, of an independent

reference set X = (x1,x2, . . . ,xN)T with each xi ∈ Rd. In the case of (4.5), this is given as

L = P (x1,x2, . . . ,xN) = P (x1)P (x2) · · ·P (xN)

=
1

(2πσ2)d/2M

N∏
i=1

M∑
j=1

e−
1

2σ2
‖xi−yj‖22 (4.6a)

and taking the logarithm of the likelihood function one has

logL =
N∑
i=1

log

(
M∑
j=1

exp

(
− 1

2σ2
‖xi − yj‖2

2

))
− d

2
log 2π − d log σ − logM. (4.6b)

Since only the first term is relevant to characterize the likelihood of X, the other terms

were removed from (4.6b) and obtained

G = gN,M(X;Y ) =
N∑
i=1

log

(
M∑
j=1

exp

(
− 1

2σ2
‖xi − yj‖2

2

))
(4.7)

1‖ · ‖2 denotes the Euclidean norm in `2(Rd).
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measures the likelihood of X given that Y determine the mean locations of an underlying

Gaussian mixture model.

Limiting cases

To get an impression of the operation of gN,M , consider the two extremes: (i) Y consists

of a single value that governs the placement of N elements of X and (ii) Y has a full

complement of M values that provide influence to place a single x1. In the former,

gN,1 = − 1

2σ2

N∑
i=1

‖xi − y1‖2
2 (4.8a)

is maximized if xi = y1,∀i. In the latter case,

g1,M = log

(
M∑
j=1

exp

(
− 1

2σ2
‖x1 − yj‖2

2

))
(4.8b)

for which x1 is chosen so that2

x1

M∑
j=1

exp

(
− 1

2σ2
‖x1 − yj‖2

2

)
=

M∑
j=1

yj exp

(
− 1

2σ2
‖x1 − yj‖2

2

)
(4.8c)

showing that x1 is the self consistent expected value of the y ∈ Y taking into account the

probability that it induces. Some caution is required for σ � 1 when N � M , which is
2Note that ∇x‖x− yj‖2 = (x− yj)‖x− yj‖−12 .
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illustrated in the following example. Let Y = {−1, 0, 1} and consider

g1,3(x;σ) = log

(
exp

(
− 1

2σ2
|x+ 1|2

)
+ exp

(
− 1

2σ2
|x|2
)

+ exp

(
− 1

2σ2
|x− 1|2

))
.

(4.8d)

It is easy to verify that this has a local maximum at x = 0, and provided σ is suffi-

ciently small, additional local maximum at x = ±1. However, g(0;σ) = log(1+2e−1/2σ2
) >

g(±1;σ) = log(1+e−1/2σ2
+e−2/σ2

) so the maximum is attained at x1 = 0 but limσ→0 |g(0;σ)−

g(±1;σ)| = 0.

4.1.2 Map Smoothness

In mathematical analysis, the smoothness of a function is a property measured by the

number of derivatives it has which are continuous. A smooth function is a function that

has derivatives of all orders everywhere in its domain.

The function f is said to be of class C∞, or smooth, if it has derivatives of all orders.

The function f is said to be of class Cω, or analytic, if f is smooth and if its Taylor series

expansion around any point in its domain converges to the function in some neighborhood

of the point. Cω is thus strictly contained in C∞. To put it differently, the class C0

consists of all continuous functions. The class C1 consists of all differentiable functions

whose derivative is continuous; such functions are called continuously differentiable. Thus,
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a C1 function is exactly a function whose derivative exists and is of class C0.

The various order of parametric continuity can be described as follows:

• C−1: curves are discontinuous;

• C0: curves are continuous;

• C1: first derivatives are continuous;

• C2: first and second derivatives are continuous;

• Cn: first through nth derivatives are continuous.

For CPD we suppose that the sets X and Y are connected through a map f : Rd 7→ Rd

with X acting as a finite sample of the domain and Y an independent finite sample of

the range. We also presume that each component of f (with a certain abuse of notation,

denoted as f as well) is sufficiently regular, f ∈ L2(Rd) ∩ L∞(Rd), to have a well defined

Fourier transform

f̂(s) =

∫
Rd

f(t)e−2πis·t dt, f̌(t) =

∫
Rd

f(s)e2πis·t ds (4.9)

with its corresponding inverse transform.3

3Finding the correction inversion expression for any given definition of the Fourier transform depends
primarily on the expressions

∫
R eis(t−t0) ds = 2πδ(t− t0) and δ(at) = 1

|a|δ(t), both defined in the sense of

distributions. If f̂(s) = A
∫
Rd f(t)eiαs·t dt and f̌(t) = B

∫
Rd f(s)e−iαs·t ds then the condition that f̂ ◦ f̌ =

f̌ ◦ f̂ = Id is satisfied if (2π)dAB = |α|d. Consistent with this condition is the choice A = B = 1, α = −2π
used herein.
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Finally, we characterize each map f by a smoothness defined as a high pass filter of the

power spectrum of the function and in particular

S(f) =

∫
Rd

|f̂(s)|2

Ĝ(s)
ds (4.10)

where Ĝ is the Fourier transform of some real-valued function G. We require that Ĝ is a

positive real-valued function with the property that lim‖s‖→∞ Ĝ(s) = 0. As a result,

G(t) =

∫
Rd
Ĝ(s)e2πis·t ds =

∫
Rd
Ĝ∗(s)e−2πis·t ds = G∗(−t) = G(−t) (4.11)

and in an analogous way, Ĝ(s) = Ĝ∗(s) = Ĝ(−s). A particularly convenient realization is

G(t) = e−
|t|2

2β2 , Ĝ(s) = (2πβ2)d/2e−
β2

2
|2πs|2 . (4.12)

Correspondingly with this choice for S, we can compute the effect on a single frequency

component f(t) = (sinωt1, sinωt2, . . . , sinωtd)
T. Although f /∈ L2(Rd), one can determine

in the sense of distributions that4

2if̂(s) = δ
(
s− ω

2π
1d

)
− δ

(
s +

ω

2π
1d

)
. (4.13a)

4The former result follows from the filtering action of the delta function so that
∫
R δ(t− t0)e−2πist dt =

e−2πist0 , the relation 2i sinωti = eiωti − e−iωti , and the scaling rule that δ(at) = 1
|a|δ(t) for any a ∈ R.
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Furthermore,5

4|f̂(s)|2 = δ
(
s− ω

2π
1d

)
+ δ

(
s +

ω

2π
1d

)
(4.13b)

and as a result

S(f) =

(
1

4πβ2
eβ

2ω2

) d
2

(4.13c)

showing that S acts as a measure of frequency and in this case the frequency component

is proportional to logS.

4.1.3 Minimization I

The dual objectives of maximizing G (minimizing−G) and minimizing S can be attained

with a linear combination

E = −
N∑
i=1

log

(
M∑
j=1

exp

(
− 1

2σ2
‖xi − yj‖2

2

))
+
λ

2

∫
Rd

|f̂(s)|2

Ĝ(s)
ds (4.14a)

for some chosen λ ∈ R, which acts as a tradeoff parameter, and connection through the

map f that

yj = y0j + f(y0j) = y0j +

∫
Rd

f̂(s)e2πis·y0j ds (4.14b)

5Using the autocorrelation functions a(τ) = limT→∞
1
T

∫ T/2
−T/2 f(t)f(t+ τ) dt and the relationship that

â = |f̂ |2. For f(t) = sin(ωt), a(t) = 1
2 cosωt. Taking the Fourier transform gives the result.
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with y0j being an unknown pre-image of yj under the action of the map. This same

expression can also be found by also conditioning the likelihood on the smoothness S

provided it takes on an exponential distribution λ
2
e−

1
2
λS placing a decreasing probability

on increasing S.

Before taking the variation of E with respect to f̂(t) we first note that since f is

real-valued,

f̂ ∗(s) =

∫
Rd
f ∗(t)e2πis·t dt =

∫
Rd
f(t)e2πis·t dt = f̂(−s). (4.15)

Therefore, taking the first variation with respect to f̂(t),

δ

δf̂(t)
|f̂(s)|2 =

δ

δf̂(t)

(
f̂(s)f̂(−s)

)
= δ(t− s)f̂(−s) + f̂(s)δ(t + s) (4.16a)

and

δ

δf̂(t)

λ

2

∫
Rd

|f̂(s)|2

Ĝ(s)
ds =

λ

2

(
f̂(−t)
Ĝ(t)

+
f̂(−t)
Ĝ(−t)

)
= λ

f̂(−t)
Ĝ(t)

. (4.16b)

Using these expressions gives

δE
δf̂(t)

= −
N∑
i=1

∑M
j=1 exp

(
− 1

2σ2 ‖xi − yj‖2
2

)
1
σ2 (xi − yj) e2πit·y0j∑M

j=1 exp
(
− 1

2σ2 ‖xi − yj‖2
2

) + λ
f̂(−t)
Ĝ(t)

= 0 (4.17)

as the condition for an extremum with respect to f̂ where

δyj

δf̂(t)
=

∫
Rd

δ(t− s)e2πis·y0j ds = e2πit·y0j (4.18)
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Rearranging (4.17) by exchanging the order of summation

f̂(s) = Ĝ(−s)
M∑
j=1

wje−2πis·y0j = Ĝ(s)
M∑
j=1

wje−2πis·y0j (4.19a)

where the weights are

wj =
1

λσ2

N∑
i=1

exp
(
− 1

2σ2 ‖xi − yj‖2
2

)
(xi − yj)∑M

l=1 exp
(
− 1

2σ2 ‖xi − yl‖2
2

) ∈ Rd. (4.19b)

To find f(t) we use the convolution theorem and the inverse Fourier transform to

determine

∫
Rd

(
M∑
j=1

wje−2πis·y0j

)
e2πis·t ds =

M∑
j=1

wj

∫
Rd

e2πis·(t−y0j) ds =
M∑
j=1

wjδ(t− y0j) (4.20)

so that

f(t) = G(t)∗
M∑
j=1

wjδ(t−y0j) =

∫
Rd
G(s)

M∑
j=1

wjδ(t−s−y0j) ds =
M∑
l=1

wlG(t−y0l). (4.21)

Using expression (4.19)

∫
Rd

|f̂(s)|2

Ĝ(s)
ds =

M∑
k=1

wT
k

M∑
l=1

wl

∫
Rd

Ĝ(s)e2πis·(y0k−y0l) ds =
M∑
k=1

wT
k

M∑
l=1

wlG(y0k − y0l)

(4.22)
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and together with (4.21), the objective (4.14) is minimized to

E = −
N∑
i=1

log

(
M∑
j=1

e−
1

2σ2
‖xi−y0j−

∑M
l=1 wlG(y0j−y0l)‖22

)
+
λ

2

M∑
k=1

wT
k

M∑
l=1

wlG(y0k − y0l).

(4.23)

4.1.4 Minimization II

Having minimized with respect the map we now minimize over {wk} and this is facili-

tated by first defining the following matrices

W = (w1,w2, . . . ,wM)T ∈ RM×d, G ∈ RM×M : [G]kl = gkl = G(y0k − y0l), (4.24)

so that with this notation,

M∑
k=1

wT
k

M∑
l=1

wlG(y0k − y0l) =
M∑
k=1

M∑
l=1

d∑
j=1

wjkwljgkl

=
d∑
j=1

M∑
k=1

wjk

(
M∑
l=1

gklwlj

)
= Tr

(
WTGW

)
. (4.25)

If we also denote

P ∈ RM×N : [P]ji = pji =
exp

(
− 1

2σ2 ‖xi − yj‖2
2

)∑M
l=1 exp

(
− 1

2σ2 ‖xi − yl‖2
2

) (4.26)
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then6 from (4.25)

∂F
∂W

=
1

2σ2

N∑
i=1

M∑
j=1

pji
∂

∂W

∥∥∥∥∥xi − y0j −
M∑
l=1

wlG(y0j − y0l)

∥∥∥∥∥
2

2

+ λGW. (4.27)

From the definition of inner product,

‖xi − yj‖2
2 =

(
xT
i − y0

T
j −

M∑
r=1

wT
rG(y0j − y0r)

)(
xi − y0j −

M∑
l=1

wlG(y0j − y0l)

)

(4.28a)

and computing only those terms in (4.27) that depend on W,

d∑
q=1

N∑
i=1

M∑
j=1

pjixiq

M∑
r=1

wqrgrj =
d∑
q=1

M∑
r=1

wqr

M∑
j=1

grj

(
N∑
i=1

pjixiq

)
= Tr(WTGPX), (4.28b)

d∑
q=1

N∑
i=1

M∑
j=1

pjiy0jq

M∑
r=1

wqrgrj =
d∑
q=1

M∑
r=1

wqr

M∑
j=1

grj

(
N∑
i=1

pjiy0jq

)
= Tr(WTG diag(P1N)Y0)

(4.28c)

where the sum
∑N

i=1 pjiy0jq implies that the jth row of P is summed and that this sum is

applied back at row j, which is simply the jth row of the matrix diag(P1N) with 1N =

6The basic matrix calculus results used are ∂
∂W (WTA) = A and ∂

∂W (WTAW) = (A + AT)W.



42 Chapter 4. Materials and Methods

(1, 1, . . . , 1)T ∈ RN×1. The last relevant sum is then

d∑
q=1

N∑
i=1

M∑
j=1

M∑
r=1

M∑
l=1

pjiwqrgrjwlqgjl =
d∑
q=1

M∑
r=1

wqr

M∑
j=1

grj

N∑
i=1

pji

(
M∑
l=1

gjlwlq

)

= Tr(WTG diag(P1N)GW). (4.28d)

Completing (4.27)

∂F
∂W

=
1

2σ2
(−2GPX + 2G diag(P1N)Y0 + 2G diag(P1N)GW) + λGW = 0 (4.29)

as the extremal condition for W. Simplifying, since G is nonsingular, yields the final ex-

pression of

(
diag(P1N)G + λσ2I

)
W = PX − diag(P1N)Y0. (4.30)

The matching procedure required a set of parameters. We manually tuned the param-

eters (Table 4.1.4) for the algorithm to yield satisfactory matching of the markers in the

volunteer dataset.

Free Parameters: There are three free parameters in the method: λ, β, σ. Parameter

α represents the trade-off between data fitting and smoothness regularization. Parame-

ter β reflects the strength of interaction between points. Small values of β produce locally
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Symbol Definition Number

N number of effective eigenvectors/ values to approximate G) 40
β width of Gaussian distribution

(same unit as template pointset; in this case pixel) 3
λ regularization weight 28

corresp compute correspondence vector at the end of registration 300
tol tolerance 1e-6

Table 4.1: The CPD algorithm parameters

smooth transformation, while large values β of correspond to nearly pure translation trans-

formation. In this research, the value of the β is around 1 (mm). The value of σ serves

as a capture range for each Gaussian mixture component. Smaller σ indicates smaller and

more localized capture range for each Gaussian component in the mixture model. We use

deterministic annealing [UN98] for σ, starting with a large value σ and gradually reducing

it according to σ = ασ, where α is annealing rate (normally between [0.92 0.98]), so that

the annealing process is slow enough for the algorithm to be robust. The gradual reducing

of σ leads to a coarse-to-fine match strategy [MSCP06].

4.1.5 Limitations

• The first problem is that the similarity measure only depends on the Euclidean dis-

tance between points. In the case of a large degree of degradation, such as deforma-

tion, noise, or outliers, the closest point pairs may not be in correspondence, whereas

the point pairs that have the similar neighbor structures are probably in correspon-
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dence. Therefore, the contribution of each Gaussian component to the GMM is

not the same. The neighborhood structure similarity of the point pairs should be

introduced into the proportion of the GMM components.

• The second problem existing in CPD is the outliers W, which requires manual as-

signment during initialization. This requirement also limits the application of CPD.

It is difficult to determine the outliers of the two point sets before registration. An

improper value of W leads to an unpredictable registration result. Meanwhile, CPD

uses a uniform distribution 1/M to treat noise and outliers. The uniform distribution

should be related to the coordinate range of the data points rather than the number

of data points M . For example, given two data sets with the same number of points,

the point’s distribution range of one data set is larger than the other. Thus, the uni-

form distribution of the two data sets should not be equal. As a result, even if the real

outliers is assigned, a good result is still not guaranteed. Only by slight adjustment

of W to make the product of W and 1/M model the noise and outliers appropriately.

Therefore, in the CPD algorithm, W can only be called an approximate outliers ratio.
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4.1.6 Summary

Starting with a set of parameters σ, λ, β and set of point X ∈ RN×d, Y0 ∈ RM×d. Set

k = 0 and compute G(Y0) according to (4.24). Then iterate the following sequence of steps

• Determine P (X, Yk) with (4.26)

• Compute W from expression (4.30)

• k = k + 1

• Let Yk = Y0 + GW

with a stopping criteria of ‖X − Yk‖2
2 < ε. The final map is given by

f(t) =
M∑
l=1

wlG(t− y0l).
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Experiments and Results

5.1 Data

Table 5.1 presents the characteristics of patient datasets in [ESM+14]. Patient no. 5 was

coughing throughout the scanning procedure leading to unacceptably poor quality images

in which it was impossible to delineate the tumour; the data from this patient is therefore

not included in the study. (See Appendix A for Figures A.7 and A.8 which present the

Patient Matrix size Field of view no. of markers Tumor size Tumor size
ID (mm3) arm down,up arm down arm up

and matched (cm3) (cm3)

1 256× 256× 66 180× 180× 79 34, 33, 33 16.8± 0.4 18.0± 1.1
2 256× 256× 56 180× 180× 84 40, 29, 24 5.3± 0.7 6.9± 1.0
3 256× 256× 66 180× 180× 79 34, 35, 34 80.5± 4.1 73.8± 1.6
4 256× 256× 72 180× 180× 86 24, 24, 24 2.4± 0.1 2.4± 0.4
6 256× 256× 46 180× 180× 55 25, 25, 25 1.9± 0.2 1.5± 0.2

Table 5.1: Characteristics of patient datasets.

46
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different slices of the MRI for patient no. 5 when the arm adjacent to the body of the

patient (reference) and the arm placed above the head of the patient, respectively.) Thus,

the mentioned figures show that the location and size of the tumour in this dataset is

not obvious for segmentation process. Furthermore, we only use the location information

of the landmarks in the pre-surgical image and the corresponding locations during the

surgery. Therefore, no image intensity information is required in the registration procedure.

Figures 5.1 and 5.2 present the location of the tumour for patient no. 1 when the patient’s

arm adjacent to the body (supine arm down) or placed above the head (supine arm up).

(Appendix A provides the location of the tumour for patient no. 2 (A.1, A.2), 3 (A.3, A.4),

4 (A.5, A.6), 5 (A.7, A.8), and 6 (A.9, A.10) when the patient’s arm adjacent to the body

(supine arm down) or placed above the head (supine arm up)).

Also, the different 3D views of tumour in patient no. 1 are shown in Figure 5.3. (See

Appendix A for patient no. 2 (A.11), 3 (A.12), 4 (A.13), 5 (A.14), 6 (A.15))1.

5.2 Marker Selection and Matching

Immediately before imaging a range of 24−−34 MR visible markers (Brava-Pinpoint,

Beekley, USA) were placed on the skin of the left breast in a uniform distribution for each
1A sagittal (also known as anteroposterior) plane is an Y −Z plane, perpendicular to the ground, which

separates left from right. The transverse plane or axial plane (lateral, horizontal) divides the body into
cranial and caudal (head and tail) portions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.1: Patient no. 1; supine arm down, slice no. 10, 13, 15, 20, 30, 36, 39, 40, 45, respec-
tively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.2: Patient no. 1; supine arm up, slice no. 10, 13, 15, 20, 30, 36, 39, 40, 45, respec-
tively.
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(a): Axial (reference) (b): Sagittal (reference)

(c): Axial (template) (d): Sagittal (template)

Figure 5.3: Different 3D views of tumour in patient no. 1.

volunteer, see Table 5.1. The markers were held with stickers to the breast skin and, in order

to minimize disturbances in the natural behavior of the breast during the arm movement,
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these stickers were trimmed to achieve as small a contact surface as possible [ESM+14].

Thus, the number of matched markers are presented in the fourth column of Table 5.1.

It should be noted that some of the markers occasionally fell off during the process of

repositioning. In addition, there is no guarantee that by moving the patient, all of the

markers remain in the field of view of the image volume in the moving image compared to

the fixed image. The difference between the number of markers in these two cases especially

for patient no. 2 is a combined consequence of these two events.

Furthermore, the patients were initially positioned in the supine position with their

arms by their sides and contrast was injected in the contralateral (right) arm. After

acquiring the first contrast enhanced image the patients were then quickly repositioned

for the second supine breast MRI with the arm placed above the head. The position of

the MR-visible markers in the two arm-up and arm-down images for each patient were

semi-manually selected and computed using a GUI tool that was developed inhouse using

MATLAB [ESM+14]. The CPD registration [MS10] was then employed to match the

markers for rigid, affine, and deformable transformations. The matching procedure required

a set of parameters and we manually tuned the parameters for the algorithm to yield

accurate matching of the markers in a volunteer dataset. In our experiments, we used

the coherent point drift (CPD) package available at sites.google.com/site/myronenko/

research/cpd. The matching procedure on the volunteer dataset was manually verified

https:/sites.google.com/site/myronenko/research/cpd
https:/sites.google.com/site/myronenko/research/cpd
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to ensure the reliability of the tuned parameters. We then employed the same set of

parameters on our patient dataset.

5.3 Tumour Segmentation

Three independent observers, all of whom were experienced in looking at breast MR

images, segmented the tumours of each of the patients using TurtleSeg (Interactive 3D

Image Segmentation Software) [THA11] that provides a semi-manual tool for segmentation.

Table 5.1 summarizes the mean ± standard deviation of the segmented tumour volumes.

The tumour of patient no. 3 could not be reliably identified and segmented even with the

help of a radiologist therefore we segmented an enhancing cyst that was clearly visible in

the images instead. Figure A.3 is shown the slice no. 10, 15, 18, 20, 30, 40 of patient no.

3. As it shows, there is no tumour that can identify and only the cyst in this dataset is

obvious for segmentation. Here, we present data for five of the patients from our study

named as patient 1, 2, 3, 4, and 6.

5.4 Results

We computed the Dice measure of overlap between the tumour in the reference and the

registered arm up images presented in Table 5.4. In addition, we computed the Center of
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(a) (b)

(c) (d)

Figure 5.4: Patient no. 1, showing MR visible markers in reference (arm up) and template
image (arm down).
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P1 P1 P2 P2 P3 P3 P4 P4 P6 P6
D U D U D U D U D U

Seg A and Seg B 92 86 87 82 93 92 90 75 90 86
Seg A and Seg C 93 84 83 80 93 92 87 72 81 82
Seg B and Seg C 91 88 83 80 95 89 88 77 82 84
Average 92.0 86.0 84.3 80.7 93.7 91.0 83.0 74.7 84.3 84.0

Table 5.2: Evaluating Dice measure of overlap among three tumour segmentations A, B,
C, for each patient (P stand for Patient) and arm position (U and D stand for Up and
Down).

P1 P1 P2 P2 P3 P3 P4 P4 P6 P6
D U D U D U D U D U

Seg A and Seg B 0.6 1.9 0.6 0.8 0.8 0.6 0.2 1.5 0.2 0.6
Seg A and Seg C 0.5 1.9 1.1 1.0 1.2 1.8 0.7 1.4 3.6 1.2
Seg B and Seg C 1.1 0.8 1.6 0.4 0.7 2.0 0.7 0.8 3.7 1.0
Average 0.73 1.53 1.10 0.73 0.90 1.46 0.53 1.23 2.50 0.93

Table 5.3: Evaluating COM variations among three tumour segmentations A, B, C, for
each patient (P stand for Patient) and arm position (U and D stand for Up and Down) in
millimeters.

Mass (COM) of the tumours and evaluated the Euclidean distance between the tumours in

the reference and arm up images; this is defined as the COM-displacement Table 5.5. The

focus of this study is the matching of supine breast datasets which were acquired with two

different arm positions using the CPD algorithm and the positions of surface markers. Our

goal was to localize the tumour using the described scheme. We used manual segmentations

of the lesions to assess the Dice overlap and COM-displacement metrics.



5.4 Results 55

Based on the results presented in Tables 5.4 and 5.5, it can be recognized that the

deformable CPD point sets registration Dice scores were generally superior than the CPD

rigid and affine except in patient 4 and 6. It can be observed that Dice measure of patient

4 was not consistent with the other patients in Table 5.4. These could be due to several

factors. The initial unregistered arm-up and down positions have a displacement of 46 mm

which is the largest among all of the patients in the study. Also, due to a miscommunication

problem in placing the markers, only one side of the breast was covered by the markers for

patient 6” [ESM+14]. In addition, the tumour is close to the COM of the markers and as

expected CPD rigid gave the best results compared to CPD deformable, affine and TPS

for patient 6. As we expected, the result of the experiments vary based on the tumour

size, shape, and location.

One way of measuring how well images have been aligned by registration is to measure

how much the template and reference images overlap before and after registration. The

Dice measure is a way of quantifying the overlap between two regions. Thus, the Dice

measure of overlap between the segmented breast tumour in transformed moving image

(A) and the corresponding segmented breast tumour in fixed image (B) is defined as:

Dice(A,B) = 100× 2|A ∩B|
|A|+ |B|

. (5.1)

Furthermore, the center of mass (COM) variations are computed as the standard deviation
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Patient Unregistered TPS CPD-rigid CPD-affine CPD-nonrigid
ID registered registered registered registered

1 (A) 28 (A) 77 (A) 65 (A) 76 (A) 78
(B) 24 (B) 79 (B) 67 (B) 81 (B) 83
(C) 20 (C) 74 (C) 64 (C) 76 (C) 79

2 (A) 0 (A) 75 (A) 60 (A) 72 (A) 75
(B) 0 (B) 63 (B) 53 (B) 60 (B) 64
(C) 0 (C) 57 (C) 52 (C) 59 (C) 64

3 (A) 26 (A) 75 (A) 79 (A) 75 (A) 85
(B) 23 (B) 74 (B) 79 (B) 73 (B) 84
(C) 28 (C) 77 (C) 79 (C) 76 (C) 83

4 (A) 0 (A) 20 (A) 0 (A) 20 (A) 0
(B) 0 (B) 23 (B) 0 (B) 19 (B) 0
(C) 0 (C) 21 (C) 0 (C) 25 (C) 0

6 (A) 6 (A) 61 (A) 81 (A) 70 (A) 72
(B) 10 (B) 59 (B) 81 (B) 69 (B) 71
(C) 6 (C) 59 (C) 79 (C) 70 (C) 73

Table 5.4: Dice score(%)

of the COM among these three tumour segmentations, for each patient and arm position

in millimeters.

Table 5.4 evaluates the Dice measures of tumour overlap, and Table 5.5 indicates COM-

displacement of tumours in millimeters before and after registration. Three values in

each cell represent the values calculated based on each of the three independent tumour

segmentations. The maximum possible number of available matched markers have been



5.4 Results 57

Patient Unregistered TPS CPD-rigid CPD-affine CPD-nonrigid
ID registered registered registered registered

1 (A) 17.5 (A) 2.7 (A) 6.5 (A) 3.2 (A) 2.5
(B) 18.5 (B) 3.0 (B) 6.5 (B) 3.1 (B) 2.5
(C) 19.5 (C) 4.0 (C) 7.4 (C) 4.1 (C) 3.6

2 (A) 33.0 (A) 0.9 (A) 6.2 (A) 2.8 (A) 3.1
(B) 33.1 (B) 1.5 (B) 7.3 (B) 2.8 (B) 3.6
(C) 32.0 (C) 2.2 (C) 7.3 (C) 2.4 (C) 2.5

3 (A) 31.6 (A) 9.0 (A) 4.7 (A) 9.8 (A) 4.0
(B) 32.2 (B) 9.3 (B) 4.8 (B) 10.3 (B) 4.1
(C) 30.3 (C) 7.9 (C) 4.5 (C) 9.0 (C) 4.2

4 (A) 46.8 (A) 8.5 (A) 21.0 (A) 10.6 (A) 17.6
(B) 46.7 (B) 8.3 (B) 23.7 (B) 10.2 (B) 19.6
(C) 46.1 (C) 8.5 (C) 21.0 (C) 10.0 (C) 17.7

6 (A) 11.0 (A) 3.9 (A) 1.2 (A) 2.8 (A) 2.5
(B) 10.9 (B) 4.2 (B) 1.2 (B) 3.0 (B) 2.6
(C) 11.2 (C) 5.2 (C) 3.4 (C) 2.3 (C) 2.4

Table 5.5: COM-displacement (mm)

used for each patient. Figures 5.6 and 5.5 present the ovelap between the tumours before

and after applying the CPD registration methods for patient no. 1; Slice 34 of the 3D

volume, respectively (See Appendix A for patients no. 2 (A.17, A.16), 3 (A.19, A.18), 6

(A.21, A.20)
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(a) Reference (arm parallel) (b) Segmented tumour in reference

(c) Template (arm up) (d) Template overlay on reference

Figure 5.5: Patient no. 1 (Before Registration); Slice 34 of the 3D volume.

5.5 Computational Time

The CPD registration results reported in this paper took 0.4 to 0.6 seconds of CPU

time on a 64-bit Lenovo S30 ThinkStation with a 3.7 GHz Intel Xeon E5-1620 v2 processor,

running MATLAB, which is significantly lower than the computation time using TPS

(under a minute) reported in [ESM+14]. In addition, Figures 5.7, 5.8, 5.9, 5.10, 5.11

represent the CPD computational time for different types of transformations (rigid, affine,
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(e) Rigid registered template (f) Rigid registered overlay

(g) Affine registered template (h) Affine registered overlay

(i) Deformable registered template (j) Deformable registered overlay

Figure 5.6: The CPD rigid, affine and deformable registration for patient no. 1; Slice 34 of
the 3D volume.
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and nonrigid). As they illustrate, the running time for each of the transformations are

increased by increasing the number of markers.

Furthermore, the computational complexity of CPD is O(M3), where M is the number

of points in template point set [MSCP06]. Thus, The plots provide the slope of each of

the transformation lines to compare with the computational complexity of the CPD. The

slopes are shown as α, are between 2.99 to 3.8. The perfect computational complexity is

occurred when α is 3.

Also, the Figures 5.7, 5.8, 5.9, 5.10, 5.11 show that the CPD non-rigid computational

time has the higher computational time in comparing with the CPD affine and rigid for

all the datasets since the complexity of the CPD algorithm for non-rigid transformation

is more than the affine and rigid. In other words, finding the correct correspondence of

markers in the CPD non-rigid registration take more time than the CPD affine and rigid

registrations.The most rapid convergence occurs with the CPD rigid algorithm since it only

involves translation and rotation.

In order to further assess the feasibility of the registration approach in a surgical setting,

more volunteer patient datasets with tumours will be required.

Each registration took under 0.5 seconds to reconstruct the registered volume in MAT-

LAB. This is important since, for the image-aided BCS, the tracking of the marker positions

in the OR (Operation Room) and the registration of the supine breast MRI to the OR will
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Figure 5.7: The CPD rigid, affine and deformable computational time for patient no. 1.

be done while the patient is under anesthesia therefore the registration should be carried

out as quickly as possible. An implementation of the CPD algorithm in C could further

improve the time efficiency. The speed of the CPD algorithm compared to TPS [ESM+14],

is an important factor for the clinical application. Another reason to use CPD registra-

tion is its simplicity. In general, bio-mechanical models can lead to more accurate tumour

localization and can yield superior information about tumour’s shape while being more

complicated to implement, see [PBSS00] as an example.
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Figure 5.8: The CPD rigid, affine and deformable computational time for patient no. 2.

Figure 5.9: The CPD rigid, affine and deformable computational time for patient no. 3.
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Figure 5.10: The CPD rigid, affine and deformable computational time for patient no. 4.

Figure 5.11: The CPD rigid, affine and deformable computational time for patient no. 6.



Chapter 6

Conclusion and Future work

6.1 Conclusion and Discussion

We apply Coherent Point Drift, a probabilistic method for rigid, affine, and non-rigid

registration of two point sets. The registration is considered as a Maximum Likelihood

estimation problem, where one point set represents centroids of a GMM and the other

represents the data. We regularize the velocity field over the points domain to enforce

coherent motion and define the mathematical formulation of this constraint. We derive

the solution for the penalized ML estimation through the variational approach, and show

that the final transformation has an elegant kernel form. We also derive the EM optimiza-

tion algorithm with deterministic annealing. The estimated velocity field represents the

underlying rigid, affine and non-rigid transformation. Once we have the final positions of
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the GMM centroids, the correspondence between the two point sets can be easily inferred

through the posterior probability of the GMM components given the data. The computa-

tional complexity of CPD is O(M3), where M is the number of points in template point

set [MSCP06]. It is worth mentioning that the components in the point vector are not

limited to spatial coordinates. They can also represent the geometrical characteristic of an

object (e.g., curvature, moments), or the features extracted from the intensity image (e.g.,

color, gradient).

The experimental results suggest that the deformable CPD registration of 3D breast

MRI can perform more accurately compared to the rigid, affine and TPS registration meth-

ods. In general, the motion of the breast is nonrigid so that rigid or affine transformations

are not sufficient enough to describe the motion. These preliminary results also demon-

strate that in general the experiments are affected by the tumour size, shape, and location.

The CPD registration results reported in this paper took 0.4 to 0.6 seconds of CPU time

on a 64-bit Lenovo S30 ThinkStation with a 3.7 GHz Intel Xeon E5-1620 v2 processor, run-

ning MATLAB, which is significantly lower than the computation time using TPS (under

a minute) reported in [ESM+14]. In order to further assess the feasibility of the registra-

tion approach in a surgical setting, more volunteer patient datasets with tumours will be

required.

In summary we have demonstrated that the alignment of pre-surgical supine MR images
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to the patient using surface markers on the breast for co-registration is feasible. For

BCS, co-registering pre-surgical breast MRI data with the patient positioned as for surgery

will provide information on the location, extent and size of a tumour. With data for 6

volunteers, CPD algorithm worked sufficiently well, but with large uncertainty. If more

data becomes available, we would test our model again to see if similar results are observed

and how consistent those observations are.

6.2 Future work

With data for 5 volunteers, our observations may generalize on matching supine-supine

surface-based breast MRI via markers, but with large uncertainty. If more data becomes

available, we would test our model again to see if similar results are observed and how

consistent those observations are.

In addition, in registering MR images, we are most interested in aligning the boundaries

of organs and the outlines of their features. Thus, the conceptual framework of freeform de-

formations can be more practical which allows to model flexible deformations by controlling

a limited number of points, instead of considering every image pixel individually.
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Appendix

In this section, the location of the tumour for patient no. 2, 3, 4, 5, and 6 are shown

when the patient’s arm adjacent to the body (supine arm down) or placed above the head

(supine arm up) are shown. (A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10)

67
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.1: Patient no. 2; supine arm down, slice no. 6, 10, 15, 25, 29, 34, 38, 46, 50, respec-
tively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.2: Patient no. 2; supine arm up, slice no. 6, 10, 15, 25, 29, 34, 38, 46, 50, respec-
tively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.3: Patient no. 3; supine arm down, slice no. 5, 10, 15, 19, 23, 30, 35, 45, 55, respec-
tively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.4: Patient no. 3; supine arm up, slice no. 5, 10, 15, 19, 23, 30, 35, 45, 55, respec-
tively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.5: Patient no. 4; supine arm down, slice no. 5, 10, 15, 20, 27, 32, 34, 38, 45, respec-
tively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.6: Patient no. 4; supine arm up, slice no. 5, 10, 15, 20, 27, 32, 34, 38, 45, respec-
tively.
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In this section, the different 3D views of tumour in for patient no. 2, 3, 4, 5, 6 are

shown. (A.11, A.12, A.13, A.14, A.15)

In this section, the ovelap between the tumours before and after applying the CPD reg-

istration methods for patients no. 2, 3, 6; Slice 34 of the 3D volume are shown, respectively.

(A.17, A.16, A.19, A.18, A.21, A.20)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.7: Patient no. 5; supine arm down, slice no. 6, 10, 15, 18, 23, 25, 30, 40, 50, respec-
tively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.8: Patient no. 5; supine arm up, slice no. 6, 10, 15, 18, 23, 25, 30, 40, 50, respec-
tively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.9: Patient no. 6; supine arm down, slice no. 5, 10, 15, 21, 23, 26, 34, 40, 45, respec-
tively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.10: Patient no. 6; supine arm up, slice no. 5, 10, 15, 21, 23, 26, 34, 40, 45, respec-
tively.
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(a): Axial (reference) (b) Sagittal (reference)

(c): Axial (template) (d): Sagittal (template)

Figure A.11: Different 3D views of tumour in patient no. 2.
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(a): Axial (reference) (b): Sagittal (reference)

(c): Axial (template) (d): Sagittal (template)

Figure A.12: Different 3D views of tumour in patient no. 3.
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(a): Axial (reference) (b): Sagittal (reference)

(c): Axial (template) (d): Sagittal (template)

Figure A.13: Different 3D views of tumour in patient no. 4.
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(a): Axial (reference) (b): Sagittal (reference)

(c): Axial (template) (d): Sagittal (template)

Figure A.14: Different 3D views of tumour in patient no. 5.
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(a): Axial (reference) (b): Sagittal (reference)

(c): Axial (template) (d): Sagittal (template)

Figure A.15: Different 3D views of tumour in patient no. 6.
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(a) Reference (arm parallel) (b) Segmented tumour in reference

(c) Template (arm up) (d) Template overlay on reference

Figure A.16: Patient no. 2 (Before Registration); Slice 34 of the 3D volume.



85

(e) Rigid registered template (f) Rigid registered overlay

(g) Affine registered template (h) Affine registered overlay

(i) Deformable registered template (j) Deformable registered overlay

Figure A.17: The CPD rigid, affine and deformable registration for patient no. 2; Slice 34
of the 3D volume.
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(a) Reference (arm parallel) (b) Segmented tumour in reference

(c) Template (arm up) (d) Template overlay on reference

Figure A.18: Patient no. 3 (Before Registration); Slice 34 of the 3D volume.
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(e) Rigid registered template (f) Rigid registered overlay

(g) Affine registered template (h) Affine registered overlay

(i) Deformable registered template (j) Deformable registered overlay

Figure A.19: The CPD rigid, affine and deformable registration for patient no. 3; Slice 34
of the 3D volume.
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(a) Reference (arm parallel) (b) Segmented tumour in reference

(c) Template (arm up) (d) Template overlay on reference

Figure A.20: Patient no. 6 (Before Registration); Slice 26 of the 3D volume.
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(e) Rigid registered template (f) Rigid registered overlay

(g) Affine registered template (h) Affine registered overlay

(i) Deformable registered template (j) Deformable registered overlay

Figure A.21: The CPD rigid, affine and deformable registration for patient no. 6; Slice 26
of the 3D volume.



References

[B+89] Fred L Bookstein et al. Principal warps: Thin-plate splines and the de-

composition of deformations. IEEE Transactions on pattern analysis and

machine intelligence, 11(6):567–585, 1989.

[BDH96] C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. The quick-

hull algorithm for convex hulls. ACM Transactions on Mathematical Soft-

ware (TOMS), 22(4):469–483, 1996.

[BKZ04] Matt A Bernstein, Kevin F King, and Xiaohong Joe Zhou. Handbook of

MRI pulse sequences. Elsevier, 2004.

[BM92] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes.

In Robotics-DL tentative, pages 586–606. International Society for Optics

and Photonics, 1992.

90



REFERENCES 91

[Bro92] Lisa Gottesfeld Brown. A survey of image registration techniques. ACM

computing surveys (CSUR), 24(4):325–376, 1992.

[CC78] Edwin Catmull and James Clark. Recursively generated b-spline surfaces

on arbitrary topological meshes. Computer-aided design, 10(6):350–355,

1978.

[CM92] Yang Chen and Gérard Medioni. Object modelling by registration of

multiple range images. Image and vision computing, 10(3):145–155, 1992.

[DM56] Abraham De Moivre. The doctrine of chances: or, A method of calculating

the probabilities of events in play, volume 1. Chelsea Publishing Company,

1756.

[DM77] John E Dennis, Jr and Jorge J Moré. Quasi-newton methods, motivation

and theory. SIAM review, 19(1):46–89, 1977.

[Duc76] Jean Duchon. Interpolation des fonctions de deux variables suivant le

principe de la flexion des plaques minces. Revue française d’automatique,

informatique, recherche opérationnelle. Analyse numérique, 10(3):5–12,

1976.



92 REFERENCES

[ESM+14] Mehran Ebrahimi, Peter Siegler, Amen Modhafar, Claire MB Holloway,

Donald B Plewes, and Anne L Martel. Using surface markers for mri

guided breast conserving surgery: a feasibility survey. Physics in medicine

and biology, 59(7):1589, 2014.

[HM04] Eldad Haber and Jan Modersitzki. Numerical methods for volume pre-

serving image registration. Inverse problems, 20(5):1621, 2004.

[JCDW10] Ahmedin Jemal, Melissa M Center, Carol DeSantis, and Elizabeth M

Ward. Global patterns of cancer incidence and mortality rates and trends.

Cancer Epidemiology Biomarkers & Prevention, 19(8):1893–1907, 2010.

[LH03] Bin Luo and Edwin R Hancock. A unified framework for alignment and

correspondence. Computer Vision and Image Understanding, 92(1):26–55,

2003.

[LLC09a] MultiMedia LLC. MS Windows NT breast anatomy. http://

healthforself.today.com/2009/03/22/breast-cancer, 2009. Ac-

cessed: 2009-03-22.

[LLC09b] MultiMedia LLC. MS Windows NT breast mri. https://doi.org/10.

2147/RMI.S46800, 2009. Accessed: 2014-09-09.

http://healthforself.today.com/2009/03/22/breast-cancer
http://healthforself.today.com/2009/03/22/breast-cancer
https://doi.org/10.2147/RMI.S46800
https://doi.org/10.2147/RMI.S46800


REFERENCES 93

[ML05] Elizabeth Morris and Laura Liberman. Breast MRI: diagnosis and inter-

vention, volume 255. Springer Science & Business Media, 2005.

[Mod09] Jan Modersitzki. FAIR: flexible algorithms for image registration, vol-

ume 6. SIAM, 2009.

[Møl93] Martin Fodslette Møller. A scaled conjugate gradient algorithm for fast

supervised learning. Neural networks, 6(4):525–533, 1993.

[MS10] Andriy Myronenko and Xubo Song. Point set registration: Coherent point

drift. IEEE transactions on pattern analysis and machine intelligence,

32(12):2262–2275, 2010.

[MSCP06] Andriy Myronenko, Xubo Song, and Miguel A Carreira-Perpinán. Non-

rigid point set registration: Coherent point drift. In Advances in Neural

Information Processing Systems, pages 1009–1016, 2006.

[MV98] JB Antoine Maintz and Max A Viergever. A survey of medical image

registration. Medical image analysis, 2(1):1–36, 1998.

[MvdEV96] J. B. Antoine Maintz, Petra A van den Elsen, and Max A. Viergever.

Evaluation of ridge seeking operators for multimodality medical image



94 REFERENCES

matching. IEEE Transactions on pattern analysis and machine intelli-

gence, 18(4):353–365, 1996.

[NW06] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer

Science & Business Media, 2006.

[PBSS00] Donald B Plewes, Jonathan Bishop, Abbas Samani, and Justin Sciarretta.

Visualization and quantification of breast cancer biomechanical properties

with magnetic resonance elastography. Physics in medicine and biology,

45(6):1591, 2000.

[Pea94] Karl Pearson. Contributions to the mathematical theory of evolution.

Philosophical Transactions of the Royal Society of London. A, 185:71–110,

1894.

[PH77] Franco P. Preparata and Se June Hong. Convex hulls of finite sets of points

in two and three dimensions. Communications of the ACM, 20(2):87–93,

1977.

[SF00] Milan Sonka and J Michael Fitzpatrick. Volume 2, medical image process-

ing and analysis. In Handbook of medical imaging. SPIE - The international

society for optical engineering, 2000.



REFERENCES 95

[SLZ+12] Lin Shi, Wen Liu, Heye Zhang, Yongming Xie, and Defeng Wang. A

survey of gpu-based medical image computing techniques. Quantitative

imaging in medicine and surgery, 2(3):188–206, 2012.

[SoCACoRR87] Canadian Cancer Society, National Cancer Institute of Canada. Advisory

Committee on Records, and Registries. Canadian cancer statistics. Cana-

dian Cancer Society, 1987.

[Sti86] Stephen M Stigler. The history of statistics: The measurement of uncer-

tainty before 1900. Harvard University Press, 1986.

[Tan05] Christine Tanner. Registration and lesion classification of contrast-

enhanced magnetic resonance breast images. PhD thesis, School of

Medicine, King’s College London, 2005.

[THA11] Andrew Top, Ghassan Hamarneh, and Rafeef Abugharbieh. Active learn-

ing for interactive 3d image segmentation. In International Conference

on Medical Image Computing and Computer-Assisted Intervention, pages

603–610. Springer, 2011.

[TSM85] D Michael Titterington, Adrian FM Smith, and Udi E Makov. Statistical

analysis of finite mixture distributions. Wiley„ 1985.



96 REFERENCES

[UN98] Naonori Ueda and Ryohei Nakano. Deterministic annealing em algorithm.

Neural networks, 11(2):271–282, 1998.

[ZF03] Barbara Zitova and Jan Flusser. Image registration methods: a survey.

Image and vision computing, 21(11):977–1000, 2003.


	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Image Registration
	Types of Images
	Image Registration Methods
	Objective
	Literature Survey
	Introduction to the Registration in Medical Applications
	Iterative Closest Point Algorithm
	Thin Plate Spline Algorithm


	Datasets Visualization
	Breast Anatomy
	Tumour Segmentation

	Preliminary Notes
	Software
	The Gaussian Mixture Model
	Parametric Transformations
	Rigid Transformation
	Affine Transformation

	Optimization
	Interpolation

	Materials and Methods
	Coherent Point Drift (CPD) Registration Algorithm
	Gaussian Mixture Model
	Map Smoothness
	Minimization I
	Minimization II
	Limitations
	Summary


	Experiments and Results
	Data
	Marker Selection and Matching
	Tumour Segmentation
	Results
	Computational Time

	Conclusion and Future work
	Conclusion and Discussion
	Future work

	Appendix

