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Abstract. In recent years, non-local methods have been among most
efficient tools to address the classical problem of image denoising.
Recently, Romano et al. have proposed a novel algorithm aimed at
“boosting” of a number of non-local denoising algorithms as a “black-
box.” In this manuscript, we consider this algorithm and derive an ana-
lytical expression corresponding to successive applications of their pro-
posed “boosting scheme.” Mathematically, we prove that such succes-
sive application does not always enhance the input image and is equiv-
alent to a re-parameterization of the original “boosting” algorithm. We
perform a set of computational experiments on test images to support
this claim. Finally, we conclude that considering the blind application of
such boosting methods as a general remedy for all denoising schemes is
questionable.
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1 Introduction

Regardless of the acquisition process, digital images always contain undesired
variation of pixel intensity, causing an image degradation in the form of noise,
unavoidably reducing the quality of the image. Given a corrupted image y, the
goal of image denoising algorithms is to recover the original signal x. Treating
the noise to be additive, the image degradation takes the following form

y = x + n (1)

in which we assume n is a zero-mean additive white noise that shares no depen-
dence on x. A wide variety of powerful algorithms have been proposed to address
the classical problem of image denoising. This includes TV denoising [1,2], bilat-
eral filtering [3], non-Local means (NLM) [4], and block matching 3D (BM3D) [5]
to list a few. It is well known that patch based denoising algorithms are quite
successful removing noise, though these methods also may remove relevant image
content. Naturally, multiple methods have been proposed with intent to enhance
the ability of these algorithms to remove noise while retaining image content.
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More specifically, we focus on algorithm enhancement schemes that utilize a
sequential approach such as [6–8], classified by their usage of “post-processing.”

The first class of methods entails recycling of noisy residuals with intent to
import any “stolen” image content back into the estimation. The latter strength-
ens the approximation using a “cleaned” signal x̂k, bypassing any unnecessary
reintroduction of noise back into our image [7].

In [7], the authors demonstrate the effectiveness of their “boosting” method
with a clear improvement in both SNR and visual clarity regardless of image
structure or noise. In this paper, we raise the question if it is possible to apply
this boosting algorithm sequentially, with a goal to iteratively improve the overall
image quality at each iteration. We focus specifically on the Non-Local means
algorithm for two reasons; (i) it is a fundamental algorithm utilizing a patch
based approach and (ii) the NLM was validated as a method in which the “Boost-
ing” scheme was applied successfully [7].

2 Non-local Means Denoising and Its Associated
Boosting Algorithm

This section focusses on two separate aspects. In the first part, a review of the
NLM denoising algorithm [4] is presented and in the second part, the concept of
“boosting” in image denoising as introduced in [7] is reviewed.

2.1 Non-local Means Denoising

The NLM algorithm [4] exploits the innate redundancy of natural images, that
replaces every pixel in the image with a weighted average of all pixels in the
image. The weights are determined using neighborhood similarity of the pixels.
In the process “similar” neighborhoods are assigned a high weight and dissimilar
neighborhoods take low weights. Following the formation of the NLM algorithm,
the neighborhood of size d is defined for ∀ x ∈ Ω, i.e., every point in the discrete
image domain Ω, as

N d{x} = {x + r| ‖r‖∞ ≤ d} .

The NLM algorithm denoted by f(·) denoises the intensity of every pixel x ∈ Ω
of an image y via

f (y(x)) =
1

C(x)

∑

y∈Ω

w(x, y)y(y), (2)

where the weight w(x, y) and normalization C(x) are defined as

w(x, y) = exp
(

− 1
h2

∥∥y(N d{x}) − y(N d{y})
∥∥2

2,a

)
, C(x) =

∑

y∈Ω

w(x, y)
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respectively. Note that ‖.‖2,a denotes the Gaussian-weighted-semi norm, for any
patch P

‖P‖2,a = ‖G � P‖2,a

where G is a Gaussian kernel with a variance of a2, and � is the convolution
operator.

2.2 Boosting of Image Denoising Algorithms

As proposed in [7], the so called “SOS boosting” of an image denoising algo-
rithm f , to recover a superior approximation of the image x given a noisy realiza-
tion y, consists of iterations of the following three steps: Strengthen, Operate,
and Subtract. In detail for a single iteration:

1. Strengthen the signal by adding the previously denoised image and original
noisy input;

2. Operate an image denoising algorithm on the new enhanced signal;
3. Subtract the previously denoised image from the result of 2.

Treating the denoising operator f(·) as a “black-box,” the generalized boosting
method proposed in [7] is formulated as

x̂k+1 = τ f(y + ρx̂k) − (τρ + τ − 1)x̂k (3)

where x̂k denotes the approximate solution at iteration k, and x̂0 is an initial
approximation of x. It is necessary to mention that parameter ρ determines the
steady state solution and τ controls the rate of convergence. Since the boost-
ing operation is sequential and fixed for all iterations, we pose the assumption
x̂k+1 = x̂k = x̂∗ to find a steady-state solution satisfying

x̂∗ = ((ρ + 1)I − ρf))−1 f · y. (4)

Note that here we considered a linearization of the discretized denoising operator
f as f(y) = f ·y, as in [7], and I denotes the identity matrix. As proposed by [7] the
solution given by (4) is the “boosted” image that yields a superior approximation
compared to the f(y), i.e., denoising of y using the denoising operator f .

From the structure of (4) we define B(f) as

B(f) = ((ρ + 1)I − ρf))−1 f (5)

which is referred to as the “boosted” form of f and is envisioned as a “new”
denoising algorithm compared to f . The question is raised if it would be possi-
ble to further enhance the “boosting” by considering it as a new operator and
successively applying the “boosting” process.
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3 Iterative “Boosting” of “Boosting” Operators

Since we are trying to apply a boosting operation onto itself, we begin the
derivation by substitution B(f) in for the denoising filter matrix f and repeat
the process for a fixed parameter ρ. The following theorem summarizes the result
of n consecutive boosting operations.

Theorem 1. Given some denoising operator f , and some fixed parameter
ρ,∀n ∈ N

Bn(f) = ((ρ + 1)n(I − f) + f)−1 f . (6)

Proof. By induction, taking n = 1,

B1(f) =
(
(ρ + 1)1(I − f) + f

)−1
f = ((ρ + 1)I − ρf − f + f)−1 f

= ((ρ + 1)I − ρf)−1 f .

Hence, B1(f) = B(f) = ((ρ + 1)I − ρf)−1 f . Now, assuming Eq. (6) holds for
some positive integer n = k, that is

Bk(f) =
(
(ρ + 1)k (I − f) + f

)−1
f ,

we find that

Bk+1(f) = B(Bk(f))

=
(
(1 + ρ)I − ρBk(f)

)−1 Bk(f)

=
(
(1 + ρ)I − ρ

(
(1 + ρ)k(I − f) + f

)−1
f
)−1 (

(1 + ρ)k(I − f) + f
)−1

f

=
((

(1 + ρ)k(I − f) + f
) (

(1 + ρ)I − ρ
(
(1 + ρ)k(I − f) + f

)−1
f
))−1

f

=
(
(1 + ρ)k+1(I − f) + (1 + ρ)f − ρf

)−1
f .

This means that the theorem holds for n = k + 1, and this completes the
induction. �

As illustrated by Theorem1, a sequential application of B onto denoising
filter matrix f , could be performed in one step. Such sequential application is
nothing but a re-parametrization of the expression. That is (ρ + 1) �→ (ρ + 1)n,
or equivalently ρ �→ (ρ + 1)n − 1. We can also observe that if I − f is invertible
and ρ > 0, then

lim
n→∞ Bn(f) = lim

n→∞ ((ρ + 1)n(I − f) + f)−1 f = lim
n→∞((ρ + 1)n(I − f))−1f = 0.

4 Experiments

In this section we investigate the effect of boosting of the NLM operator as well
as its consecutive boosting on test images.
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Fig. 1. (a) Ground truth x, (b) Corrupted with AWGN (σ = 0.01),y, (c) NLM restored
f · y, (d) Ground truth x, (e) Corrupted with AWGN (σ = 0.01),y, (f) NLM restored
f · y

We implemented a sparse representation of the NLM algorithm as the denois-
ing operator f , with a search window of size 5 × 5 and smoothing parameter
h = 10σ. Note that σ is the standard deviation of the additive Gaussian white
noise corrupting the ideal image x.

As it can be seen in Fig. 1 after an application of the NLM on noisy Cam-
eraman and Saturn images with Additive White Gaussian Noise (AWGN) of
σ = 0.01, an increase in overall quality is achieved. To quantitatively measure
the performance at each application of the boosting Bn(f), we measure the SNR
(signal-to-noise ratio) as a function of boosting iteration count n. We also define
B0(f) = f i.e., the NLM restoration operator.

Curves relating to the computed SNR of Bn(f) · y are given in Figs. 2 and 3
respectively for Cameraman and Saturn. In each figure two different values of
noise standard deviation, namely σ = 0.01 and σ = 0.05, are considered. The
parameter ρ is varied in the range of 0.1 to 1.5 for these curves.

It is interesting to note that for both images, when the noise standard devia-
tion is σ = 0.05, no boosting can outperform the original NLM algorithm. This
fact can be verified by considering the family of curves in Figs. 2(a) and 3(a)
that are all decreasing.

For the smaller noise standard deviation σ = 0.01, the peak of the curves
is observed for Figs. 2(b) and 3(b). A zoomed-in version of both images for
σ = 0.01 can be seen on Figs. 2(c) and 3(c). It can be observed that ρ = 1.3 and
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Fig. 2. Sequential boosting of NLM algorithm under operator Bn(f) applied on noisy
Cameraman (a) AWGN (σ = 0.05), (b) AWGN (σ = 0.01), (c) Zoomed AWGN (σ =
0.01) and corresponding SNR
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Fig. 3. Sequential boosting of NLM algorithm under operator Bn(f) applied to noisy
Saturn (a) AWGN (σ = 0.05), (b) AWGN (σ = 0.01), (c) Zoomed AWGN (σ = 0.01)
and corresponding SNR
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Fig. 4. Resulting Bn(f) · y on noisy image y with AWGN (σ = 0.01) for (a) n = 1,
(b) n = 10, (c) n = 20, (d) n = 40, (e) n = 50, (f) n = 60, corresponding to the
optimal ρ = 1.3, (g) n = 1, (h) n = 10, (i) n = 20, (j) n = 40, (k) n = 50, (l) n = 60,
corresponding to the optimal ρ = 1.2
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ρ = 1.2 for n = 1 correspond to the peak of SNR corresponding the two images
of Cameraman and Saturn for the noise standard deviation of σ = 0.01. Finally,
Fig. 4 shows the resulting images Bn(f) · y for a range of values of n fixing the
corresponding peak ρ values of ρ = 1.3 and ρ = 1.2.

5 Discussion and Conclusions

Based on our experiments, choosing an optimal value of ρ can be a challenging
task for the SOS boosting algorithms. We conclude that for some higher noise
levels, SOS boosting does not improve the NLM algorithm, regardless of the
choice of ρ. Assuming SOS boosting as a new denoising operator, we asked the
question whether we can improve its performance by its iterative applications.
We proved that iterative applications of the SOS boosting is equivalent to a
re-parametrization of ρ. In addition, we showed that iterative applications of the
SOS boosting for a fixed positive ρ converges to a zero image. This proves that
considering the blind application of the SOS boosting as a general remedy for all
denoising schemes is incorrect. We believe more research is required to further
study the domain of applicability of the proposed boosting operator.
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