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Abstract. We propose a mathematical formulation aimed at paramet-
ric intensity-based registration of a deformed 3D volume to a 2D slice.
The approach is flexible and can accommodate various regularization
schemes, similarity measures, and optimizers. We evaluate the framework
on 2D-3D registration experiments of in vivo cardiac magnetic resonance
imaging (MRI) aimed at image-guided surgery applications that use of
real-time MRI as a visualization tool. An affine transformation is used
to demonstrate this parametric model. Target registration error, Jaccard
and Dice indices are used to validate the algorithm and demonstrate the
accuracy of the registration scheme on both simulated and clinical data.

Keywords: Image registration · Inverse problems · 2D to 3D align-
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1 Introduction

Cardiovascular disease is the leading cause of death globally, claiming more lives
than cancer and chronic lower respiratory disease combined [1]. In Canada, car-
diovascular disease is responsible for approximately 1 in every 3 deaths, with a
quarter of those deaths resulting from myocardial infarction [2].

Ventricular arrhythmias commonly occur in patients with previous myocar-
dial infarction due to myocardial scarring, which can disrupt electrical activity in
the heart. Arrhythmias in the ventricles are potentially life-threatening because
they can render the heart unable to effectively circulate blood through the body,
and are associated with increased risk of sudden cardiac death [3,4].

Treatment options include catheter ablation, removing or isolating anatomic
structure responsible for abnormal propagation of electrical impulses. X-ray fluo-
roscopy is traditionally used to guide cardiac catheterization procedures. However,
because of its poor soft tissue contrast and the ionizing radiation involved, real-time
magnetic resonance imaging (MRI) has beenproposed as an alternative [5–7].With
superior soft tissue contrast, real-time MRI used during cardiovascular procedures
would better capture anatomical features of the heart.

Real-time MRI provides live positional updates during intervention in 2D, but
the tradeoff between image quality and acquisition time means that 2D real-time
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MRI lacks in image quality compared to high-quality 3D MRI volumes acquired
prior to intervention. Ideally, one would register the 3D prior images to 2D real-
time images, combining the advantages of both to obtain high-quality images
that account for small amounts of motion, such as motion due to respiration, in
real time.

In this paper, we propose a mathematical framework to align high-resolution
3D MR images to noisier 2D real-time MR images. While previous work in the
area focused on rigid body transformation [7–9], we extend the model to affine
parametric registration and investigate ill-posedness of the registration as an
inverse problem.

A general mathematical model is introduced in Sect. 2. The discretization
of the model is covered in Sect. 3, followed by a Gauss-Newton optimization
strategy described in Sect. 4. Computational experiments and results on both
simulated and real 2D-3D data will be presented in Sect. 5. Finally, Sect. 6 is
dedicated to discussion and conclusions.

2 Mathematical Model

Consider the registration problem of a 3D template image T to a 2D reference
image R, where R is a realization of T deformed via a transformations y and
sliced at a certain location, e.g. z. The reference and template images are rep-
resented by mappings R : Ω ⊂ R

2 → R and T : Ω × Z ⊂ R
3 → R of compact

support. Considering a slice location z, the goal is to find the transformation
y : R3 → R

3 such that Lz(T [y]) is similar to R, in which T [y] is the transformed
template image and Lz : L2(Ω × Z) → L

2(Ω) is the slicing operator at level
z ∈ Z ⊂ R, where Lz(T (x1, x2, x3)) := T (x1, x2, z) for (x1, x2, x3) ∈ R

3. A for-
mulation of the 2D-3D image registration of a template image T to a reference
image R can be written as the following problem.

2D-3D Image Registration Problem: Given two images R : Ω ⊂ R
2 → R

and T : Ω × Z ⊂ R
3 → R and an arbitrary given slice location z ∈ R, find a

transformation y : R3 → R
3 that minimize the objective functional

J [y] := D[Lz(T [y]),R] + S[y − yref].

Here, D is a distance that measures the dissimilarity of Lz(T [y]) and R, and S
is a regularization expression on the transformation y that penalizes transfor-
mations “away” from yref.

2.1 Parametric 2D-3D Registration

It is possible that y can be parametrized via parameters w. For example if y is
an affine transformation, the transformation on a point x = (x1, x2, x3) can be
expressed as

y(w;x) =

⎛
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In general, for the parametric registration problem we equivalently aim to
minimize

J [w] := D[Lz(T [y(w)]),R] + S[w − wref]. (1)

Here we assume sum of squared distances (SSD) is the dissimilarity measure D

D[Lz(T ),R] = DSSD[Lz(T ),R] :=
1
2

∫

Ω

(Lz(T (x)) − R(x))2 dx.

Furthermore, the regularization functional S can be defined as

S[w − wref] :=
1
2

× (w − wref)T M (w − wref)

for a symmetric positive definite weight matrix M that acts as a regularizer
(see [10,11]).

If no regularization is imposed on w, for any pair of given images R and T the
above model is ill-posed. Therefore, to yield a unique w, we require a regularizer
S independent of the input images. The following theorem proves this claim.

Theorem 1. Consider a given z. Any two affine transformations wA and wB

that satisfy the following conditions yield Lz(T [y(wA;x)])=Lz(T [y(wB ;x)]):
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Proof. Note that for any given z and w

Lz[T [y(w;x)]] = Lz

[
T

[ ⎛
⎝

w1 w2 w3

w5 w6 w7

w9 w10 w11

⎞
⎠

⎛
⎝

x1

x2

x3

⎞
⎠ +

⎛
⎝

w4

w8

w12

⎞
⎠

]]

= T
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Now consider wA and wB that for any x1, x2
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Therefore for any x1, x2
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Equating the right-hand-side and left-hand-side to zero completes the proof.
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This suggests that if no regularization is imposed, the first two columns of wA

and wB have to match. In addition, for any given third columns of wA and wB ,
a given z, and a given fourth column of wA, we can always compute the fourth
column of wB that yields the same sliced result. This suggests that if we impose
no regularization, the parameters of w have to be reduced to 9 instead of 12. In
practice, since we typically have information about the reference wref, we impose
regularization and keep the number of parameters as 12 in the parametric affine
case.

Furthermore, regardless of how many parameters we choose for w, the reg-
istration problem may be ill-posed in theory due to the intensities of images R
and T . For example, if R is image of a disk in 2D and T is image of a sphere
in 3D, the problem yields infinitely many solutions since infinitely many cross-
sections of a sphere can yield a disk. Due to the structure of the employed input
images, this does not happen in practice. That being said, we regularize the
affine transformation w in all cases.

3 Discretization

Here we apply a discretize-then-optimize paradigm (see [12] and the FAIR soft-
ware [11] for details) to minimize the functional in Eq. (1). Assuming that Ω,
or equivalently each slice of the image, is discretized into n pixels and Z into
l pixels, we can define discretized grids xR and xT respectively relating to R
and T such that xR = [x1

k, x2
k]k=1,...,n and xT = [x1

j , x
2
j , x

3
j ]j=1,...,n×l. Expres-

sions xR and xT denote discretizations of Ω and Ω ×Z respectively. Throughout
this paper, it is assumed that cell-centered-discretized images R, T respectively
contains n and nl pixels. Furthermore, y ≈ y(w; xT ), w = w, R ≈ R(xR), and
T ≈ T (xT ) each corresponding to a discretization. Table 1 summarizes size of
the corresponding discrete variables throughout this manuscript. Discretization
of the operators D, S are represented by D, S (see [11]). For a given z, the
discretization of the operator Lz, denoted by Lz can be computed as

Lz = In×nl := In×n ⊗
1×l size︷ ︸︸ ︷

[0, . . . , 0, 1︸︷︷︸
�l(z+ω)/2ω�-th component

, 0, . . . , 0]

in which we have assumed Z is the interval (−ω, ω). The discretized problem is
now to minimize the functional

J [w] := D[Lz(T (y(w))), R] + S(w − wref).

4 Optimization

We compute the derivative and Hessian of J denoted by dJ and HJ respectively
in a Gauss-Newton approach described in Algorithm 1 [13]. For simplicity, we
allow ourselves to interchangeably refer to derivatives of real-valued functions
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as Jacobians as well. Hessian and Jacobian of the regularization S are denoted
respectively as dS and HS . To proceed, we represent the Jacobian of the objective
function J as dJ := ∂J

∂w . Now define L := Lz(T (y(w))) and r := L−R. Choosing
the SSD distance measure and defining Ψ(r) := 1

2rT r = D[Lz(T (y(w))), R] yields
J [w] = Ψ + S(w − wref). Hence using the chain-rule

∂J

∂w
=

(
∂Ψ

∂r

) (
∂r

∂L

)(
∂L

∂T

) (
∂T

∂y

)(
∂y

∂w

)
+

(
∂S

∂w

)

= rT × In×n × In×nl × dT × dy + dS

= rT × In×n × In×nl × dT × dy + (w − wref)TM

in which dT := ∂T
∂y represents the derivative of the interpolant and dy := ∂y

∂w is
the derivative of the transformation y with respect to w. Derivatives dy and dT
are both available in FAIR [11]. Finally, the Hessian of J denoted by HJ can be
approximated as

HJ = d2Ψ + HS ≈ drT dr + HS = drT dr + M,

where

dr =
(

∂r

∂L

)(
∂L

∂T

)(
∂T

∂y

) (
∂y

∂w

)
= In×n × In×nl ×dT ×dy = In×nl ×dT ×dy.

In practice, to speed up the computations, matrix-free implementation of the
algorithm can be applied. We also consider different discrete representations of
the image registration problem, and address the discrete problems sequentially
in the so-called multi-level approach. Starting with the coarsest and thus most

Table 1. Sizes of discrete variables. n and l correspond to the number of pixels in each
slice and the number of slices in the discretization, respectively.

Variable(s) Size

R, L, r n × 1

T nl × 1

xR 2n × 1

xT , y 3nl × 1

w, wref 12 × 1

S, J, Ψ 1 × 1

dT nl × 3nl

dy 3nl × 12

dr n × 12

dJ, dS 1 × 12

HJ , HS ,M 12 × 12
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inexpensive problem, a solution is computed, which then serves as a starting
guess for the next finer discretization. This procedure has several advantages. It
adds additional regularization to the registration problem (more weight is given
to more important structure), it is very efficient (typically, most of the work
is done on the computationally inexpensive coarse representations, and only a
refinement is required on the costly finest representation), it preserves the opti-
mization character of the problem and thus allows the use of established schemes
for line searches and stopping. The use of this technique leads to optimal schemes
in the sense that only a fixed number of arithmetic operations is expected for
every data point and prevents the optimization problem from being trapped in
a local minimum.

Algorithm 1. Minimizing J [w] using Gauss-Newton Approach
Initialize

[
w
]← [w0

]
.

while not converged do
Evaluate HJ and dJ at [w].
Solve the descent direction from the linear equation HJ

[
δw
]

= −dJT .
Find a positive scalar step-size s using a line-search scheme.
Update

[
w
]← [w ]+ s

[
δw
]
.

end while

5 Experiments and Results

5.1 Data

3D pre-procedural and 2D real-time cardiac MRI were acquired from 6 volunteers
using a 1.5T MRI scanner (GE Healthcare, Waukesha, WI).

Prior 3D (cine) images: Each pre-procedural 3D volume consists of a stack of
short-axis slices of the heart with a resolution of 1.37 × 1.37 × 8mm3 and a field
of view (FOV) of 350 × 350mm2. The images were acquired at end-expiration
breath-hold during the end-diastolic cardiac phase with an electrocardiogram
(ECG) gated GE FIESTA pulse sequence.

Real-time images: 2D real-time images were aquired at the same slice locations
as in the pre-procedural scans, but under free-breathing conditions. The images
were obtained with a fast spiral balanced steady state free precession sequence
at a frame rate of 8 fps, an in-plane resolution of 2.2 × 2.2mm2, slice thickness
8mm, and a FOV of 350×350mm2. The images were also ECG-gated, and only
end-diastole phase images were used in the following experiments.
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5.2 Controlled 3D to 2D Experiments on Cardiac MRI

Controlled experiments were performed where the 2D reference image was a
slice of the 3D cine volume transformed with a known affine transformation.
In this example, 2D-3D registration was performed between the original 3D
volume and the generated reference image where n = 128 × 128, l = 12,
Ω = (−175, 175) × (−175, 175)mm2, Z = (−48, 48)mm. Also, we assume the
regularizer M is a diagonal 12 × 12 matrix with unit entries on the main diag-
onal except for locations 3, 7, and 11 where entries are 106, i.e., large. This
regularizer ensures the third column of the computed w to be [0, 0, 1]T in prac-
tice; see Theorem 1. Linear interpolation and an Armijo line search [13] were

a b c
d e
f g

Fig. 1. Results of registration between a 3D image and a 2D cine image in a controlled
experiment. (a) Reference image R. (b), (c) Template slice L before and after registra-
tion. (d), (e) Difference between the reference image and template slice (L − R) before
and after registration. (f) Segmentation masks showing left ventricle overlap before reg-
istration, with out-of-plane reference image landmarks projected onto image (×) and
in-plane template image landmarks (+). (g) Segmentation masks showing left ventricle
overlap after registration, with out-of-plane reference image landmarks projected onto
image (×) and in-plane template image landmarks (+).
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Table 2. Jaccard indices and Dice coefficients of left ventricle overlap before and after
registration in the controlled experiment described above.

Jaccard Dice TRE (mm)

Before registration 0.05 0.10 43.2 ± 4.3

After registration 1.00 1.00 1.8 ± 0.1

used in the multi-level Gauss-Newton optimization framework with a stopping
criteria of 100 fixed iterations that was tuned to yield satisfactory results for our
experiments.

Figure 1 shows the results of a controlled experiment where the reference
image was produced by transforming a 3D cine volume with arbitrarily selected
parameters w = [w1, w2, ..., w12] = [1.2, 0.2,−0.1, 23mm, −0.2, 1, 0.1,−41mm,
0, 0.1, 0.9,−15mm] and then slicing with Lz, where the slicing operation was
applied at location z = −4mm.

The Dice similarity coefficient and Jaccard index used are defined as:
Dice(A,B) = 2|A∩B|

|A|+|B| and Jaccard(A,B) = |A∩B|
|A∪B| .

The left ventricle and landmarks in the left ventricle were manually seg-
mented in the original 3D cine image volume. The endocardium of the left ven-
tricle was outlined for each slice in the original image volume, and the in-plane
segmentations stacked to produce a 3D segmentation mask. The 3D segmenta-
tion mask was then transformed using transformation parameters obtained from
the registration, i.e., w, and then sliced at z = −4mm to obtain L = Lz(T (y(w))).
Jaccard and Dice indices were then computed between the projected masks of
the reference image and the slice described above. The target registration error
(TRE) before registration was obtained by measuring the l2-normed distance
between the landmark locations in the initially transformed volume and in the
template image. Landmark locations in the initially transformed volume (from
which the 2D reference slice is taken) can be computed using the manually
selected landmark locations and the initial transformation, which are known.
The TRE after registration was similarly obtained from landmark locations in
the template image transformed with w, see Table 2.

5.3 3D Cine to 2D Real-Time Cardiac MRI Registration

Experiments were performed where a 2D real-time image was taken to be the
reference image. 2D-3D registration was performed between a 3D cine image
volume and the real-time reference image with the same parameters as in the
controlled experiment, with the exception that there is no initial transformation
applied on the reference image.

The real-time and cine cardiac MRI are already rather aligned initially in the
z-direction so performing registration between images from different slices would
be a better indicator of how well the algorithm works to move things in the z-
direction. By choosing the slicing operation at location z = −36mm, the initial
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a b c
d e
f g

Fig. 2. Results of registration between a 3D cine image and a 2D real-time image on the
same subject as in the controlled experiment, with an initial misalignment of approxi-
mately 32mm in the z-direction (through the image plane). (a) Reference image R. (b),
(c) Template slice L before and after registration. (d), (e) Difference between the refer-
ence image and template slice (L − R) before and after registration. (f) Segmentation
masks showing left ventricle overlap before registration, with in-plane reference image
landmarks (×) and out-of-plane template image landmarks projected onto image (+).
(g) Segmentation masks showing left ventricle overlap after registration, with in-plane
reference image landmarks (×) and out-of-plane template image landmarks projected
onto image (+).

template slice was geometrically positioned approximately 32mm away from the
location of the reference image (at z0 = −4mm). To register the images, the reg-
istration algorithm must now produce a result that translates the 3D template
image approximately 32mm in the z-direction, along with appropriate align-
ments in the x-, y-directions. To validate registration results, the left ventricle
in each of the 2D real-time images was segmented by an expert. Results including
projected left ventricle overlap before and after registration are shown in Fig. 2.
Jaccard and Dice indices were again computed between the projected masks of
the 2D real-time image and a slice of the 3D mask transformed using parameters
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Table 3. Jaccard indices and Dice coefficients of left ventricle overlap before and after
registration between a 3D cine image and 2D real-time image, described above.

Jaccard Dice TRE (mm)

Before registration 0.67 0.80 32.8 ± 0.3

After registration 0.87 0.93 4.5 ± 0.1

obtained from the registration. The TRE was also computed assuming that z0,
the z-coordinate location of the 2D reference image, is known. The l2-normed
distances of the landmarks in the reference image and template images before
and after registration were used to compute the TREs. The results are shown in
Table 3.

6 Discussion and Conclusion

In the previous section, it was demonstrated that the algorithm performs very
well in controlled experiments where the reference image is a transformed and
sliced version of the template image, and also where the initial misalignment
due to translation alone was approximately 50mm. The presented example was
a nominal instance of several experiments performed over a range of parame-
ters. We can conclude that between images of the same modality, the proposed
multi-level parametric 2D-3D registration scheme can align images well for mis-
alignments within reasonable limits encountered in clinical applications, such as
motion due to respiration. The left ventricle overlap between the 3D cine volume
and a 2D real-time image in the previous section aligned well after registration, as
quantified by the Jaccard and Dice indices. The registration algorithm corrected
the large z-direction translation and produced a resulting image with structural
features in the heart very similar to those in the reference image as shown in
Fig. 2. It is worth noting that, the regions outside the heart may not look as sim-
ilar due to large motion of surrounding organs such as the lungs and diaphragm.
For images of two different acquisition types – real-time and prior cine, the reg-
istration algorithm improved alignment. For multi-modality experiments where
intensities differ more drastically, one can consider using other dissimilarity mea-
sures and/or optimizers [11,14] that can fit well within the context of the general
proposed model.
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